Stuff for combinatorics.simple_graph.basic #
instance
SimpleGraph.instIsEmptyElemSym2EdgeSetOfSubsingleton_exponentialRamsey
{V : Type u_1}
{G : SimpleGraph V}
[Subsingleton V]
:
The edge set of the complete graph on V is in bijection with the off-diagonal elements of sym2 V TODO: maybe this should be an equality of sets? and then turn it into a bijection of types
Equations
Instances For
@[simp]
theorem
SimpleGraph.adj_sup_iff
{ι : Type u_5}
{V : Type u_6}
{s : Finset ι}
{f : ι → SimpleGraph V}
{x y : V}
:
theorem
SimpleGraph.top_hom_injective
{V : Type u_1}
{V' : Type u_2}
{G : SimpleGraph V}
(f : ⊤ →g G)
:
graph embeddings from a complete graph are in bijection with graph homomorphisms from it
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
SimpleGraph.neighborSet_iSup
{V : Type u_1}
{ι : Type u_5}
{s : ι → SimpleGraph V}
{x : V}
:
theorem
SimpleGraph.neighborSet_iInf
{V : Type u_1}
{ι : Type u_5}
[Nonempty ι]
{s : ι → SimpleGraph V}
{x : V}
:
theorem
SimpleGraph.neighborSet_disjoint
{V : Type u_1}
{G H : SimpleGraph V}
{x : V}
(h : Disjoint G H)
:
Disjoint (G.neighborSet x) (H.neighborSet x)
instance
SimpleGraph.instIsEmptyElemNeighborSetBot_exponentialRamsey
{V : Type u_5}
{x : V}
:
IsEmpty ↑(⊥.neighborSet x)
theorem
SimpleGraph.neighborFinset_sup
{V : Type u_1}
[DecidableEq V]
{G H : SimpleGraph V}
{x : V}
[Fintype ↑((G ⊔ H).neighborSet x)]
[Fintype ↑(G.neighborSet x)]
[Fintype ↑(H.neighborSet x)]
:
theorem
SimpleGraph.neighborFinset_inf
{V : Type u_1}
[DecidableEq V]
{G H : SimpleGraph V}
{x : V}
[Fintype ↑((G ⊓ H).neighborSet x)]
[Fintype ↑(G.neighborSet x)]
[Fintype ↑(H.neighborSet x)]
:
instance
SimpleGraph.Finset.decidableRelSup
{ι : Type u_5}
{V : Type u_6}
{s : Finset ι}
{f : ι → SimpleGraph V}
[(i : ι) → DecidableRel (f i).Adj]
:
DecidableRel (s.sup f).Adj
Equations
- SimpleGraph.Finset.decidableRelSup x✝¹ x✝ = decidable_of_iff' (∃ i ∈ s, (f i).Adj x✝¹ x✝) ⋯
theorem
SimpleGraph.neighborFinset_supr
{V : Type u_1}
[DecidableEq V]
{ι : Type u_5}
{s : Finset ι}
{f : ι → SimpleGraph V}
{x : V}
[(i : ι) → Fintype ↑((f i).neighborSet x)]
[Fintype ↑((s.sup f).neighborSet x)]
:
@[simp]
theorem
SimpleGraph.coe_neighborFinset
{V : Type u_1}
{G : SimpleGraph V}
{x : V}
[Fintype ↑(G.neighborSet x)]
:
theorem
SimpleGraph.neighborFinset_disjoint
{V : Type u_1}
{G H : SimpleGraph V}
{x : V}
[Fintype ↑(G.neighborSet x)]
[Fintype ↑(H.neighborSet x)]
(h : Disjoint G H)
:
Disjoint (G.neighborFinset x) (H.neighborFinset x)
theorem
SimpleGraph.degree_eq_zero_iff
{V : Type u_1}
{G : SimpleGraph V}
{v : V}
[Fintype ↑(G.neighborSet v)]
: