Documentation

ExponentialRamsey.Prereq.Mathlib.Combinatorics.SimpleGraph.Basic

Stuff for combinatorics.simple_graph.basic #

The edge set of the complete graph on V is in bijection with the off-diagonal elements of sym2 V TODO: maybe this should be an equality of sets? and then turn it into a bijection of types

Equations
Instances For
    theorem SimpleGraph.disjoint_left {V : Type u_1} {G H : SimpleGraph V} :
    Disjoint G H ∀ (x y : V), G.Adj x y¬H.Adj x y
    @[simp]
    theorem SimpleGraph.adj_sup_iff {ι : Type u_5} {V : Type u_6} {s : Finset ι} {f : ιSimpleGraph V} {x y : V} :
    (s.sup f).Adj x y is, (f i).Adj x y
    theorem SimpleGraph.top_hom_injective {V : Type u_1} {V' : Type u_2} {G : SimpleGraph V} (f : →g G) :
    def SimpleGraph.topHomGraphEquiv {V : Type u_1} {V' : Type u_2} {G : SimpleGraph V} :

    graph embeddings from a complete graph are in bijection with graph homomorphisms from it

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      theorem SimpleGraph.neighborSet_sup {V : Type u_1} {G H : SimpleGraph V} {x : V} :
      theorem SimpleGraph.neighborSet_inf {V : Type u_1} {G H : SimpleGraph V} {x : V} :
      theorem SimpleGraph.neighborSet_iSup {V : Type u_1} {ι : Type u_5} {s : ιSimpleGraph V} {x : V} :
      (⨆ (i : ι), s i).neighborSet x = ⋃ (i : ι), (s i).neighborSet x
      theorem SimpleGraph.neighborSet_iInf {V : Type u_1} {ι : Type u_5} [Nonempty ι] {s : ιSimpleGraph V} {x : V} :
      (⨅ (i : ι), s i).neighborSet x = ⋂ (i : ι), (s i).neighborSet x
      theorem SimpleGraph.neighborSet_disjoint {V : Type u_1} {G H : SimpleGraph V} {x : V} (h : Disjoint G H) :
      theorem SimpleGraph.neighborFinset_sup {V : Type u_1} [DecidableEq V] {G H : SimpleGraph V} {x : V} [Fintype ((GH).neighborSet x)] [Fintype (G.neighborSet x)] [Fintype (H.neighborSet x)] :
      theorem SimpleGraph.neighborFinset_inf {V : Type u_1} [DecidableEq V] {G H : SimpleGraph V} {x : V} [Fintype ((GH).neighborSet x)] [Fintype (G.neighborSet x)] [Fintype (H.neighborSet x)] :
      instance SimpleGraph.Finset.decidableRelSup {ι : Type u_5} {V : Type u_6} {s : Finset ι} {f : ιSimpleGraph V} [(i : ι) → DecidableRel (f i).Adj] :
      Equations
      theorem SimpleGraph.neighborFinset_supr {V : Type u_1} [DecidableEq V] {ι : Type u_5} {s : Finset ι} {f : ιSimpleGraph V} {x : V} [(i : ι) → Fintype ((f i).neighborSet x)] [Fintype ((s.sup f).neighborSet x)] :
      (s.sup f).neighborFinset x = s.biUnion fun (i : ι) => (f i).neighborFinset x
      @[simp]
      theorem SimpleGraph.coe_neighborFinset {V : Type u_1} {G : SimpleGraph V} {x : V} [Fintype (G.neighborSet x)] :
      theorem SimpleGraph.neighborFinset_disjoint {V : Type u_1} {G H : SimpleGraph V} {x : V} [Fintype (G.neighborSet x)] [Fintype (H.neighborSet x)] (h : Disjoint G H) :
      theorem SimpleGraph.degree_eq_zero_iff {V : Type u_1} {G : SimpleGraph V} {v : V} [Fintype (G.neighborSet v)] :
      G.degree v = 0 ∀ (w : V), ¬G.Adj v w