theorem
Lean.Grind.Preorder.le_of_lt
{α : Type u}
[LE α]
[LT α]
[Std.LawfulOrderLT α]
{a b : α}
(h : a < b)
:
theorem
Lean.Grind.Preorder.ne_of_lt
{α : Type u}
[LE α]
[LT α]
[Std.LawfulOrderLT α]
{a b : α}
(h : a < b)
:
theorem
Lean.Grind.Preorder.ne_of_gt
{α : Type u}
[LE α]
[LT α]
[Std.LawfulOrderLT α]
{a b : α}
(h : a > b)
:
theorem
Lean.Grind.Preorder.lt_of_lt_of_le
{α : Type u}
[LE α]
[LT α]
[Std.LawfulOrderLT α]
[Std.IsPreorder α]
{a b c : α}
(h₁ : a < b)
(h₂ : b ≤ c)
:
theorem
Lean.Grind.Preorder.lt_of_le_of_lt
{α : Type u}
[LE α]
[LT α]
[Std.LawfulOrderLT α]
[Std.IsPreorder α]
{a b c : α}
(h₁ : a ≤ b)
(h₂ : b < c)
:
theorem
Lean.Grind.Preorder.lt_trans
{α : Type u}
[LE α]
[LT α]
[Std.LawfulOrderLT α]
[Std.IsPreorder α]
{a b c : α}
(h₁ : a < b)
(h₂ : b < c)
:
theorem
Lean.Grind.Preorder.not_ge_of_lt
{α : Type u}
[LE α]
[LT α]
[Std.LawfulOrderLT α]
[Std.IsPreorder α]
{a b : α}
(h : a < b)
:
theorem
Lean.Grind.Preorder.not_gt_of_lt
{α : Type u}
[LE α]
[LT α]
[Std.LawfulOrderLT α]
[Std.IsPreorder α]
{a b : α}
(h : a < b)
:
theorem
Lean.Grind.PartialOrder.le_iff_lt_or_eq
{α : Type u}
[LE α]
[LT α]
[Std.LawfulOrderLT α]
[Std.IsPartialOrder α]
{a b : α}
:
theorem
Lean.Grind.LinearOrder.trichotomy
{α : Type u}
[LE α]
[LT α]
[Std.LawfulOrderLT α]
[Std.IsLinearOrder α]
(a b : α)
:
theorem
Lean.Grind.LinearOrder.le_of_not_lt
{α : Type u}
[LE α]
[LT α]
[Std.LawfulOrderLT α]
[Std.IsLinearOrder α]
{a b : α}
(h : ¬a < b)
:
theorem
Lean.Grind.LinearOrder.lt_of_not_le
{α : Type u}
[LE α]
[LT α]
[Std.LawfulOrderLT α]
[Std.IsLinearOrder α]
{a b : α}
(h : ¬a ≤ b)
: