Documentation

Init.Grind.Ordered.Order

theorem Lean.Grind.Preorder.le_of_lt {α : Type u} [LE α] [LT α] [Std.LawfulOrderLT α] {a b : α} (h : a < b) :
a b
theorem Lean.Grind.Preorder.lt_irrefl {α : Type u} [LE α] [LT α] [Std.LawfulOrderLT α] (a : α) :
¬a < a
theorem Lean.Grind.Preorder.ne_of_lt {α : Type u} [LE α] [LT α] [Std.LawfulOrderLT α] {a b : α} (h : a < b) :
a b
theorem Lean.Grind.Preorder.ne_of_gt {α : Type u} [LE α] [LT α] [Std.LawfulOrderLT α] {a b : α} (h : a > b) :
a b
theorem Lean.Grind.Preorder.lt_of_lt_of_le {α : Type u} [LE α] [LT α] [Std.LawfulOrderLT α] [Std.IsPreorder α] {a b c : α} (h₁ : a < b) (h₂ : b c) :
a < c
theorem Lean.Grind.Preorder.lt_of_le_of_lt {α : Type u} [LE α] [LT α] [Std.LawfulOrderLT α] [Std.IsPreorder α] {a b c : α} (h₁ : a b) (h₂ : b < c) :
a < c
theorem Lean.Grind.Preorder.lt_trans {α : Type u} [LE α] [LT α] [Std.LawfulOrderLT α] [Std.IsPreorder α] {a b c : α} (h₁ : a < b) (h₂ : b < c) :
a < c
theorem Lean.Grind.Preorder.not_ge_of_lt {α : Type u} [LE α] [LT α] [Std.LawfulOrderLT α] [Std.IsPreorder α] {a b : α} (h : a < b) :
¬b a
theorem Lean.Grind.Preorder.not_gt_of_lt {α : Type u} [LE α] [LT α] [Std.LawfulOrderLT α] [Std.IsPreorder α] {a b : α} (h : a < b) :
¬a > b
theorem Lean.Grind.PartialOrder.le_iff_lt_or_eq {α : Type u} [LE α] [LT α] [Std.LawfulOrderLT α] [Std.IsPartialOrder α] {a b : α} :
a b a < b a = b
theorem Lean.Grind.LinearOrder.trichotomy {α : Type u} [LE α] [LT α] [Std.LawfulOrderLT α] [Std.IsLinearOrder α] (a b : α) :
a < b a = b b < a
theorem Lean.Grind.LinearOrder.le_of_not_lt {α : Type u} [LE α] [LT α] [Std.LawfulOrderLT α] [Std.IsLinearOrder α] {a b : α} (h : ¬a < b) :
b a
theorem Lean.Grind.LinearOrder.lt_of_not_le {α : Type u} [LE α] [LT α] [Std.LawfulOrderLT α] [Std.IsLinearOrder α] {a b : α} (h : ¬a b) :
b < a