Theorems about additively and multiplicatively invertible elements in rings #
@[simp]
theorem
AddUnits.val_mulLeft
{R : Type u_1}
[NonUnitalNonAssocSemiring R]
(x : AddUnits R)
(y : R)
:
@[simp]
theorem
AddUnits.val_neg_mulLeft
{R : Type u_1}
[NonUnitalNonAssocSemiring R]
(x : AddUnits R)
(y : R)
:
@[simp]
theorem
AddUnits.val_neg_mulRight
{R : Type u_1}
[NonUnitalNonAssocSemiring R]
(x : AddUnits R)
(y : R)
:
@[simp]
theorem
AddUnits.val_mulRight
{R : Type u_1}
[NonUnitalNonAssocSemiring R]
(x : AddUnits R)
(y : R)
:
theorem
AddUnits.neg_mul_left
{R : Type u_1}
[NonUnitalNonAssocSemiring R]
{x : AddUnits R}
{y : R}
:
theorem
AddUnits.neg_mul_right
{R : Type u_1}
[NonUnitalNonAssocSemiring R]
{x : AddUnits R}
{y : R}
:
theorem
AddUnits.neg_mul_eq_mul_neg
{R : Type u_1}
[NonUnitalNonAssocSemiring R]
{x y : AddUnits R}
:
theorem
IsAddUnit.mul_left
{R : Type u_1}
[NonUnitalNonAssocSemiring R]
{x : R}
(h : IsAddUnit x)
(y : R)
:
theorem
IsAddUnit.mul_right
{R : Type u_1}
[NonUnitalNonAssocSemiring R]
{x : R}
(h : IsAddUnit x)
(y : R)
:
def
invertibleNeg
{R : Type u_1}
[Mul R]
[One R]
[HasDistribNeg R]
(a : R)
[Invertible a]
:
Invertible (-a)
-⅟a
is the inverse of -a
Instances For
@[simp]
theorem
invOf_neg
{R : Type u_1}
[Monoid R]
[HasDistribNeg R]
(a : R)
[Invertible a]
[Invertible (-a)]
:
@[simp]
theorem
pos_of_invertible_cast
{R : Type u_1}
[NonAssocSemiring R]
[Nontrivial R]
(n : ℕ)
[Invertible ↑n]
:
A version of inv_sub_inv'
for invOf
.