def
SimpleGraph.EdgeLabelling.coloredNeighborSet
{V : Type u_1}
{G : SimpleGraph V}
{K : Type u_3}
{EC : G.EdgeLabelling K}
(c : K)
(v : V)
:
Set V
EC.coloredNeighborSet c v is the set of vertices that have an edge to v in G which is
colored with c under the edge coloring EC.
Equations
Instances For
theorem
SimpleGraph.EdgeLabelling.coloredNeighborSet_not_mem
{V : Type u_1}
{G : SimpleGraph V}
{K : Type u_3}
{EC : G.EdgeLabelling K}
(c : K)
(v : V)
:
v ∉ coloredNeighborSet c v
instance
SimpleGraph.EdgeLabelling.coloredNeighborSetFintype
{V : Type u_1}
{G : SimpleGraph V}
{K : Type u_3}
{c : K}
{EC : G.EdgeLabelling K}
{v : V}
[Fintype V]
[DecidableRel G.Adj]
[DecidableEq K]
:
Fintype ↑(coloredNeighborSet c v)
theorem
SimpleGraph.EdgeLabelling.coloredNeighborSet.symm
{V : Type u_1}
{G : SimpleGraph V}
{K : Type u_3}
{EC : G.EdgeLabelling K}
(c : K)
(v w : V)
:
theorem
SimpleGraph.TopEdgeLabelling.monochromaticBetween_neighbors
{V : Type u_1}
{K : Type u_3}
{EC : TopEdgeLabelling V K}
{c : K}
{y : V}
{T : Finset V}
(h : ∀ x ∈ T, y ∈ EdgeLabelling.coloredNeighborSet c x)
:
EdgeLabelling.MonochromaticBetween EC ↑T {y} c
def
SimpleGraph.TopEdgeLabelling.MonochromaticBook
{V : Type u_1}
{K : Type u_3}
{EC : TopEdgeLabelling V K}
(c : K)
(T Y : Finset V)
:
EC.monochromatic c T Y if T and Y are disjoint, all edges within T and all edges between
T and Yare given color c by EC.
Equations
- SimpleGraph.TopEdgeLabelling.MonochromaticBook c T Y = (Disjoint T Y ∧ SimpleGraph.EdgeLabelling.MonochromaticOf EC (↑T) c ∧ SimpleGraph.EdgeLabelling.MonochromaticBetween EC (↑T) (↑Y) c)
Instances For
theorem
SimpleGraph.TopEdgeLabelling.monochromaticBook_subset
{V : Type u_1}
{K : Type u_3}
{EC : TopEdgeLabelling V K}
{i : K}
{A B D : Finset V}
(b : MonochromaticBook i A B)
(s : D ⊆ B)
:
MonochromaticBook i A D
theorem
SimpleGraph.TopEdgeLabelling.monochromaticBook_pullback
{V : Type u_1}
{V' : Type u_2}
{K : Type u_3}
{EC : TopEdgeLabelling V K}
(f : V' ↪ V)
(c : K)
(T Y : Finset V')
(B : MonochromaticBook c T Y)
:
MonochromaticBook c (Finset.map f T) (Finset.map f Y)
theorem
SimpleGraph.TopEdgeLabelling.monochromaticBook_empty
{V : Type u_1}
{K : Type u_3}
{EC : TopEdgeLabelling V K}
{i : K}
{A : Finset V}
:
MonochromaticBook i ∅ A
theorem
Finset.one_le_prod'''
{R : Type u_1}
{ι : Type u_2}
[CommMonoidWithZero R]
[PartialOrder R]
[ZeroLEOneClass R]
[PosMulMono R]
{f : ι → R}
{s : Finset ι}
(h : ∀ i ∈ s, 1 ≤ f i)
:
theorem
Fintype.exists_mul_of_sum_bound
{X : Type u_1}
{Y : Type u_2}
[Nonempty X]
[Fintype X]
[AddCommMonoid Y]
[LinearOrder Y]
[IsOrderedAddMonoid Y]
(g : X → Y)
:
theorem
Finset.exists_mul_of_sum_bound
{X : Type u_1}
{Y : Type u_2}
[Nonempty X]
[Fintype X]
[AddCommMonoid Y]
[LinearOrder Y]
[IsOrderedAddMonoid Y]
(s : Finset X)
(g : X → Y)
(ns : s.Nonempty)
:
theorem
Finset.exists_le_expect
{ι : Type u_1}
{α : Type u_2}
[AddCommMonoid α]
[LinearOrder α]
[IsOrderedAddMonoid α]
[Module ℚ≥0 α]
[PosSMulMono ℚ≥0 α]
{s : Finset ι}
{f : ι → α}
(hs : s.Nonempty)
:
theorem
probabilistic_method
{X : Type}
[Fintype X]
[MeasurableSpace X]
(U : MeasureTheory.Measure X)
(p : X → X → Prop)
[(i j : X) → Decidable (p j i)]
:
theorem
pidgeon_thing
{X Y : Type}
[Nonempty X]
[Fintype X]
[Nonempty Y]
[Fintype Y]
[MeasurableSpace (X × Y)]
[MeasurableSingletonClass (X × Y)]
(p : X × Y → Prop)
[(i : X × Y) → Decidable (p i)]
{β : ℝ}
:
theorem
Fintype.argmax'
{X Y : Type}
[Fintype X]
[Nonempty X]
(f : X → Y)
[LinearOrder Y]
:
∃ (x : X), ∀ (y : X), f y ≤ f x
theorem
maxUnion
{Λ : ℝ}
{X Y : Type}
[Fintype X]
[Nonempty X]
[LinearOrder X]
(τ : Y → X → ℝ)
(nen : ∀ (x : Y), (Finset.image (τ x) Finset.univ).Nonempty)
: