@[reducible, inline]
An edge coloring maps each member of the graph's edge set to a colour in C
-
Equations
- SimpleGraph.EdgeColoring C = (↑G.edgeSet → C)
Instances For
def
SimpleGraph.EdgeColoring.coloredNeighborSet
{V : Type α}
{G : SimpleGraph V}
{C : Type}
{EC : EdgeColoring C}
(c : C)
(v : V)
:
Set V
EC.coloredNeighborSet c v
is the set of vertices that have an edge to v
in G
which is
colored with c
under the edge coloring EC
.
Equations
Instances For
instance
SimpleGraph.EdgeColoring.coloredNeighborSetFintype
{V : Type α}
{G : SimpleGraph V}
{C : Type}
{c : C}
{v : V}
[Fintype V]
[DecidableRel G.Adj]
[DecidableEq C]
{EC : EdgeColoring C}
:
Fintype ↑(coloredNeighborSet c v)
def
SimpleGraph.EdgeColoring.coloredNeighborFinset
{V : Type α}
{G : SimpleGraph V}
{C : Type}
{EC : EdgeColoring C}
(c : C)
(v : V)
[Fintype ↑(coloredNeighborSet c v)]
:
Finset V
EC.coloredNeighborFinset c v
is the Finset of vertices that have c
-colored edge to v
in
G
under the edge coloring EC
, in case the c
-colored subgraph of G
is locally finite at v
.
Equations
Instances For
theorem
Finset.one_le_prod'''
{R : Type u_2}
{ι : Type u_1}
[CommMonoidWithZero R]
[PartialOrder R]
[ZeroLEOneClass R]
[PosMulMono R]
{f : ι → R}
{s : Finset ι}
(h : ∀ i ∈ s, 1 ≤ f i)
:
theorem
Fintype.exists_mul_of_sum_bound
{X : Type u_1}
{Y : Type u_2}
[Nonempty X]
[Fintype X]
[AddCommMonoid Y]
[LinearOrder Y]
[IsOrderedAddMonoid Y]
(g : X → Y)
:
theorem
Finset.exists_mul_of_sum_bound
{X : Type u_1}
{Y : Type u_2}
[Nonempty X]
[Fintype X]
[AddCommMonoid Y]
[LinearOrder Y]
[IsOrderedAddMonoid Y]
(s : Finset X)
(g : X → Y)
(ns : s.Nonempty)
:
theorem
Finset.exists_le_expect
{ι : Type u_1}
{α : Type u_2}
[AddCommMonoid α]
[LinearOrder α]
[IsOrderedAddMonoid α]
[Module ℚ≥0 α]
[PosSMulMono ℚ≥0 α]
{s : Finset ι}
{f : ι → α}
(hs : s.Nonempty)
:
theorem
probabilistic_method
{X : Type}
[Fintype X]
[MeasurableSpace X]
(U : MeasureTheory.Measure X)
(p : X → X → Prop)
[(i j : X) → Decidable (p j i)]
:
theorem
pidgeon_thing
{X Y : Type}
[Nonempty X]
[Fintype X]
[Nonempty Y]
[Fintype Y]
[MeasurableSpace (X × Y)]
[MeasurableSingletonClass (X × Y)]
(p : X × Y → Prop)
[(i : X × Y) → Decidable (p i)]
{β : ℝ}
:
theorem
Fintype.argmax'
{X Y : Type}
[Fintype X]
[Nonempty X]
(f : X → Y)
[LinearOrder Y]
:
∃ (x : X), ∀ (y : X), f y ≤ f x
theorem
maxUnion
{Λ : ℝ}
{X Y : Type}
[Fintype X]
[Nonempty X]
[LinearOrder X]
(τ : Y → X → ℝ)
(nen : ∀ (x : Y), (Finset.image (τ x) Finset.univ).Nonempty)
: