Documentation

MulticolorRamsey.Basic

@[reducible, inline]
abbrev SimpleGraph.EdgeColoring {V : Type α} {G : SimpleGraph V} (C : Type) :
Type α

An edge coloring maps each member of the graph's edge set to a colour in C -

Equations
Instances For
    def SimpleGraph.EdgeColoring.coloredNeighborSet {V : Type α} {G : SimpleGraph V} {C : Type} {EC : EdgeColoring C} (c : C) (v : V) :
    Set V

    EC.coloredNeighborSet c v is the set of vertices that have an edge to v in G which is colored with c under the edge coloring EC.

    Equations
    Instances For
      def SimpleGraph.EdgeColoring.coloredNeighborFinset {V : Type α} {G : SimpleGraph V} {C : Type} {EC : EdgeColoring C} (c : C) (v : V) [Fintype (coloredNeighborSet c v)] :

      EC.coloredNeighborFinset c v is the Finset of vertices that have c-colored edge to v in G under the edge coloring EC, in case the c-colored subgraph of G is locally finite at v.

      Equations
      Instances For
        theorem moments {V : Type u_1} {r : } (X : Type) [Fintype X] [Nonempty X] [MeasurableSpace X] [Fintype V] (σ : Fin rXV) (l : Fin r) (U : MeasureTheory.Measure (X × X)) :
        0 (x : X × X), (fun (xx : X × X) => i : Fin r, (σ i xx.1 ⬝ᵥ σ i xx.2) ^ l i) x U
        theorem tsum_even_nat {T : Type u_1} [TopologicalSpace T] [AddCommMonoid T] (f : T) :
        ∑' (x : {n : | Even n}), f x = ∑' (x : ), f (2 * x)
        noncomputable def coshsqrt (x : ) :
        Equations
        Instances For
          theorem mew {x : } (xpos : 0 x) :
          Summable fun (n : ) => x ^ n / (2 * n).factorial
          theorem lt_coshsqrt (x : ) (xnn : 0 x) :
          x < 2 + coshsqrt x
          theorem ge_coshsqrt (x : ) (xnn : 0 x) :
          theorem icc_coshsqrt_neg (x : ) (xnn : x 0) :
          theorem coshsqrt_pos {x : } (xn : x 0) :
          0 < 2 + coshsqrt x
          theorem coshsqrt_nonneg {x : } :
          0 2 + coshsqrt x
          theorem coshsqrt_mono {x y : } (xnn : 0 x) (xly : x y) :
          theorem one_le_coshsqrt (x : ) :
          1 2 + coshsqrt x
          theorem Finset.one_le_prod''' {R : Type u_2} {ι : Type u_1} [CommMonoidWithZero R] [PartialOrder R] [ZeroLEOneClass R] [PosMulMono R] {f : ιR} {s : Finset ι} (h : is, 1 f i) :
          1 is, f i
          noncomputable def f {r : } (x : Fin r) :
          Equations
          Instances For
            theorem specialFunctionE {r : } (x : Fin r) :
            f x 3 ^ r * r * Real.exp (∑ i : Fin r, (x i + 3 * r))
            theorem specialFunctionEc {r : } (rpos : 0 < r) (x : Fin r) (h : ∃ (i : Fin r), x i < -3 * r) :
            f x -1
            theorem Fintype.exists_mul_of_sum_bound {X : Type u_1} {Y : Type u_2} [Nonempty X] [Fintype X] [AddCommMonoid Y] [LinearOrder Y] [IsOrderedAddMonoid Y] (g : XY) :
            ∃ (j : X), i : X, g i card X g j
            theorem Finset.exists_mul_of_sum_bound {X : Type u_1} {Y : Type u_2} [Nonempty X] [Fintype X] [AddCommMonoid Y] [LinearOrder Y] [IsOrderedAddMonoid Y] (s : Finset X) (g : XY) (ns : s.Nonempty) :
            js, is, g i s.card g j
            theorem Finset.exists_le_expect {ι : Type u_1} {α : Type u_2} [AddCommMonoid α] [LinearOrder α] [IsOrderedAddMonoid α] [Module ℚ≥0 α] [PosSMulMono ℚ≥0 α] {s : Finset ι} {f : ια} (hs : s.Nonempty) :
            xs, s.expect f f x
            theorem Fin.exists_mul_of_sum_bound {r : } [Nonempty (Fin r)] (g : Fin rENNReal) :
            ∃ (j : Fin r), i : Fin r, g i r * g j
            theorem probabilistic_method {X : Type} [Fintype X] [MeasurableSpace X] (U : MeasureTheory.Measure X) (p : XXProp) [(i j : X) → Decidable (p j i)] :
            0 < (U.prod U) {x : X × X | p x.1 x.2}∃ (x : X) (x' : X), p x x'
            theorem pidgeon_sum {X Y : Type} [nenx : Nonempty X] [fin : Fintype X] [nen : Nonempty Y] [fin✝ : Fintype Y] (p : XYProp) [(i : X) → (j : Y) → Decidable (p i j)] {β : } :
            β (Fintype.card {x : X × Y | p x.1 x.2}) / (Fintype.card (X × Y))∃ (x : X) (Y' : Finset Y), β * (Fintype.card Y) Y'.card yY', p x y
            theorem pidgeon_thing {X Y : Type} [Nonempty X] [Fintype X] [Nonempty Y] [Fintype Y] [MeasurableSpace (X × Y)] [MeasurableSingletonClass (X × Y)] (p : X × YProp) [(i : X × Y) → Decidable (p i)] {β : } :
            let U := (PMF.uniformOfFintype (X × Y)).toMeasure; ENNReal.ofReal β U {x : X × Y | p x}∃ (x : X) (Y' : Finset Y), β * (Fintype.card Y) Y'.card yY', p (x, y)
            theorem prod_set_eq_union {X Y : Type} (f : X × YProp) :
            {a : X × Y | f a} = ⋃ (x : X), {x} ×ˢ {y : Y | f (x, y)}
            theorem Fintype.argmax' {X Y : Type} [Fintype X] [Nonempty X] (f : XY) [LinearOrder Y] :
            ∃ (x : X), ∀ (y : X), f y f x
            theorem maxUnion {Λ : } {X Y : Type} [Fintype X] [Nonempty X] [LinearOrder X] (τ : YX) (nen : ∀ (x : Y), (Finset.image (τ x) Finset.univ).Nonempty) :
            {x : Y | Λ (Finset.image (τ x) Finset.univ).max' } = ⋃ (i : X), {x : Y | Λ τ x i}
            theorem sum_sqrt_le {r : } {X : Type u_1} [Fintype X] [nenr : Nonempty (Fin r)] {τ : XFin r} {x : X} :
            let M := fun (x : X) => (Finset.image (τ x) Finset.univ).max' ; i : Fin r, (3 * r * τ x i + 3 * r) r * (3 * r) * (M x + 1)
            theorem three_ineq_ENN {r : } (rpos : 0 < r) :
            r * ENNReal.ofReal (3 ^ (-(r * 4))) * 3 ^ r * 3 + r ^ 2 * ENNReal.ofReal (3 ^ (-(r * 4))) * ENNReal.ofReal (r * 3 * r) * 3 ^ r * 3 1
            theorem omg {a b : } (p : b 0) :
            a = a / b * b
            theorem omg2 {a b c : } (p : b 0) :
            a c a / b c / b
            theorem omg3 {a b : } (p : b 0) :
            a = a * b / b
            theorem omg4 {a b c : } (bnn : 0 b) :
            a c a * b c * b
            theorem omg5 {a b c : ENNReal} :
            b c a * b a * c
            theorem omg6 {a b : } :
            -a a * b -1 b
            theorem omg7 (a b c : ENNReal) (ab : a < b) (ac : a < c) (bc : b < c) :
            c - b < c - a