theorem
ae_le_of_forallOn_le
{α : Type u_1}
{g f : α → ℝ}
{s : Set α}
[MeasurableSpace α]
{μ : MeasureTheory.Measure α}
(ms : MeasurableSet s)
(h₁ : ∀ x ∈ s, g x ≤ f x)
:
theorem
indicator_one_mul
{X : Type u_1}
{Y : Type u_2}
{x : X}
[MulZeroOneClass Y]
(f : X → Y)
[MeasurableSpace X]
(E : Set X)
:
theorem
IntegrableFin
{X : Type}
[Fintype X]
[MeasurableSpace X]
[MeasurableSingletonClass X]
{ℙᵤ : MeasureTheory.Measure X}
[MeasureTheory.IsFiniteMeasure ℙᵤ]
{f : X → ℝ}
:
theorem
bounded_thingy_on_s
{s : Set ℝ}
{f g h : ℝ → ℝ}
(ms : MeasurableSet s)
(Ih : MeasureTheory.IntegrableOn h s MeasureTheory.volume)
(Ig : MeasureTheory.IntegrableOn g s MeasureTheory.volume)
(dh : ∀ x ∈ s, h x ≤ f x)
(dg : ∀ x ∈ s, f x ≤ g x)
(mf : Measurable f)
:
theorem
integrableOn_one_div_two_mul_sqrt_plus
(m c : ℝ)
:
MeasureTheory.IntegrableOn (fun (x : ℝ) => 1 / (2 * √(x + c))) (Set.Icc (-c) m) MeasureTheory.volume
theorem
improper_integral_shift
(c : ℝ)
(f : ℝ → ℝ)
(cf : ContinuousOn f (Set.Ioi 0))
(If : MeasureTheory.IntegrableOn f (Set.Ici 0) MeasureTheory.volume)
(Iif : MeasureTheory.IntegrableOn (fun (x : ℝ) => f (x + c)) (Set.Ici (-c)) MeasureTheory.volume)
:
theorem
integral_bound
{V : Type}
{X : Finset V}
[MeasurableSpace { x : V // x ∈ X }]
{ℙᵤ : MeasureTheory.Measure ({ x : V // x ∈ X } × { x : V // x ∈ X })}
[dm : DiscreteMeasurableSpace ({ x : V // x ∈ X } × { x : V // x ∈ X })]
{r : ℕ}
{M : { x : V // x ∈ X } × { x : V // x ∈ X } → ℝ}
{E : Set ({ x : V // x ∈ X } × { x : V // x ∈ X })}
(mp : ∀ (x : { x : V // x ∈ X } × { x : V // x ∈ X }), M x < -1 → x ∉ E)
(measInter :
Measurable fun (a : ({ x : V // x ∈ X } × { x : V // x ∈ X }) × ℝ) =>
(E ∩ {x : { x : V // x ∈ X } × { x : V // x ∈ X } | a.2 ≤ M x}).indicator
(fun (x : { x : V // x ∈ X } × { x : V // x ∈ X }) => 1) a.1)
{c C : ENNReal}
(cpos : 0 < c)
(cnt : c ≠ ⊤)
(cleC : c.toReal ≤ C.toReal - 1)
: