Documentation

MulticolorRamsey.Integrals

theorem ae_le_of_forallOn_le {α : Type u_1} {g f : α} {s : Set α} [MeasurableSpace α] {μ : MeasureTheory.Measure α} (ms : MeasurableSet s) (h₁ : xs, g x f x) :
theorem indicator_one_mul {X : Type u_1} {Y : Type u_2} {x : X} [MulZeroOneClass Y] (f : XY) [MeasurableSpace X] (E : Set X) :
f x * E.indicator 1 x = E.indicator f x
theorem bounded_thingy_on_s {s : Set } {f g h : } (ms : MeasurableSet s) (Ih : MeasureTheory.IntegrableOn h s MeasureTheory.volume) (Ig : MeasureTheory.IntegrableOn g s MeasureTheory.volume) (dh : xs, h x f x) (dg : xs, f x g x) (mf : Measurable f) :
theorem continuousOn_add_const {c : } {s : Set } :
ContinuousOn (fun (x : ) => x + c) s
theorem intOn1 {m : } :
MeasureTheory.IntegrableOn (fun (x : ) => 1 / (2 * (x + 1))) (Set.Ioc (-1) m) MeasureTheory.volume
theorem improper_integral_shift (c : ) (f : ) (cf : ContinuousOn f (Set.Ioi 0)) (If : MeasureTheory.IntegrableOn f (Set.Ici 0) MeasureTheory.volume) (Iif : MeasureTheory.IntegrableOn (fun (x : ) => f (x + c)) (Set.Ici (-c)) MeasureTheory.volume) :
(x : ) in Set.Ioi (-c), f (x + c) = (x : ) in Set.Ioi 0, f x
theorem measEsqc {d c : } :
Measurable fun (x : ) => Real.exp (d * (x + 1)) * (c * (1 / (2 * (x + 1))))
theorem integrableOn_exp_neg_sqrt_plus {c : } (cn : 0 c) :
MeasureTheory.IntegrableOn (fun (x : ) => Real.exp (-(x + c)) * (1 / (2 * (x + c)))) (Set.Ioi (-c)) MeasureTheory.volume
theorem intEsqc (c : ) :
MeasureTheory.IntegrableOn (fun (x : ) => Real.exp (-(x + 1)) * (c * (1 / (2 * (x + 1))))) (Set.Ioi (-1)) MeasureTheory.volume
theorem integral_exp_neg_sqrt :
(x : ) in Set.Ioi 0, Real.exp (-x) * (1 / (2 * x)) = 1
theorem terriblel (c : ) :
(a : ) in Set.Ioi (-1), Real.exp (-(a + 1)) * (c * (1 / (2 * (a + 1)))) = c
theorem terrible (c : ENNReal) (cnt : c ) :
∫⁻ (a : ) in Set.Ioi (-1), ENNReal.ofReal (Real.exp (-(a + 1)) * (c.toReal * (1 / (2 * (a + 1))))) = c
theorem lintegral_Ioc_eq_Ioi {X : Type u_1} (l : ) (f : ENNReal) (x : X) (b : X) :
∫⁻ (a : ) in Set.Ioc l (b x), f a = ∫⁻ (a : ) in Set.Ioi l, f a * {y : X | a b y}.indicator 1 x
@[reducible, inline]
noncomputable abbrev ecsq (c y : ) :
Equations
Instances For
    @[reducible, inline]
    noncomputable abbrev ecsq' (c x : ) :
    Equations
    Instances For
      @[reducible, inline]
      abbrev oℝ (r : ) :
      Equations
      Instances For
        theorem fundamental (c m : ) (mp : -1 m) :
        (y : ) in Set.Ioc (-1) m, ecsq' c y = ecsq c m - ecsq c (-1)
        theorem integral_ecsq' (c m : ) (mp : -1 m) (cpos : 0 < c) :
        oℝ (ecsq c m) = (∫⁻ (y : ) in Set.Ioc (-1) m, oℝ (ecsq' c y)) + oℝ (ecsq c (-1))
        theorem exp_indicator {X : Type u_1} (m : X × X) (E : Set (X × X)) (mp : ∀ (x : X × X), m x < -1xE) (x : X × X) (c : ENNReal) (cpos : 0 < c) (cnt : c ) :
        oℝ (ecsq c.toReal (m x)) * E.indicator 1 x = (∫⁻ (a : ) in Set.Ioi (-1), oℝ (ecsq' c.toReal a) * (E {x : X × X | a m x}).indicator (fun (x : X × X) => 1) x) + E.indicator (fun (x : X × X) => 1) x
        theorem integral_bound {V : Type} {X : Finset V} [MeasurableSpace { x : V // x X }] {ℙᵤ : MeasureTheory.Measure ({ x : V // x X } × { x : V // x X })} [dm : DiscreteMeasurableSpace ({ x : V // x X } × { x : V // x X })] {r : } {M : { x : V // x X } × { x : V // x X }} {E : Set ({ x : V // x X } × { x : V // x X })} (mp : ∀ (x : { x : V // x X } × { x : V // x X }), M x < -1xE) (measInter : Measurable fun (a : ({ x : V // x X } × { x : V // x X }) × ) => (E {x : { x : V // x X } × { x : V // x X } | a.2 M x}).indicator (fun (x : { x : V // x X } × { x : V // x X }) => 1) a.1) {c C : ENNReal} (cpos : 0 < c) (cnt : c ) (cleC : c.toReal C.toReal - 1) :
        have β := oℝ (3 ^ (-4 * r)); ℙᵤ E < β(∀ (y : ), -1 yℙᵤ (E {x : { x : V // x X } × { x : V // x X } | y M x}) < oℝ (Real.exp (-C.toReal * (y + 1))) * β * r)∫⁻ (x : { x : V // x X } × { x : V // x X }) in E, oℝ (ecsq c.toReal (M x)) ℙᵤ β * (r * c + 1)