Documentation

MulticolorRamsey.Integrals

theorem ae_le_of_forallOn_le {α : Type u_1} {g f : α} {s : Set α} [MeasurableSpace α] {μ : MeasureTheory.Measure α} (ms : MeasurableSet s) (h₁ : xs, g x f x) :
theorem indicator_one_mul {X : Type u_1} {Y : Type u_2} {x : X} [MulZeroOneClass Y] (f : XY) [MeasurableSpace X] (E : Set X) :
f x * E.indicator 1 x = E.indicator f x
theorem bounded_thingy_on_s {s : Set } {f g h : } (ms : MeasurableSet s) (Ih : MeasureTheory.IntegrableOn h s MeasureTheory.volume) (Ig : MeasureTheory.IntegrableOn g s MeasureTheory.volume) (dh : xs, h x f x) (dg : xs, f x g x) (mf : Measurable f) :
theorem continuousOn_add_const {c : } {s : Set } :
ContinuousOn (fun (x : ) => x + c) s
theorem intOn1 {m : } :
MeasureTheory.IntegrableOn (fun (x : ) => 1 / (2 * (x + 1))) (Set.Ioc (-1) m) MeasureTheory.volume
theorem improper_integral_shift (c : ) (f : ) (cf : ContinuousOn f (Set.Ioi 0)) (If : MeasureTheory.IntegrableOn f (Set.Ici 0) MeasureTheory.volume) (Iif : MeasureTheory.IntegrableOn (fun (x : ) => f (x + c)) (Set.Ici (-c)) MeasureTheory.volume) :
(x : ) in Set.Ioi (-c), f (x + c) = (x : ) in Set.Ioi 0, f x
theorem integrableOn_pow {m a c : } (mp : 0 < m) (ha : a < -1) (cp : 0 c) :
theorem measEsqc {d c : } :
Measurable fun (x : ) => Real.exp (d * (x + 1)) * (c * (1 / (2 * (x + 1))))
theorem integrableOn_exp_neg_sqrt_plus {c : } (cn : 0 c) :
MeasureTheory.IntegrableOn (fun (x : ) => Real.exp (-(x + c)) * (1 / (2 * (x + c)))) (Set.Ioi (-c)) MeasureTheory.volume
theorem intEsqc (c : ) :
MeasureTheory.IntegrableOn (fun (x : ) => Real.exp (-(x + 1)) * (c * (1 / (2 * (x + 1))))) (Set.Ioi (-1)) MeasureTheory.volume
theorem integral_exp_neg_sqrt :
(x : ) in Set.Ioi 0, Real.exp (-x) * (1 / (2 * x)) = 1
theorem terriblel (c : ) :
(a : ) in Set.Ioi (-1), Real.exp (-(a + 1)) * (c * (1 / (2 * (a + 1)))) = c
theorem terrible (c : ENNReal) (cnt : c ) :
∫⁻ (a : ) in Set.Ioi (-1), ENNReal.ofReal (Real.exp (-(a + 1)) * (c.toReal * (1 / (2 * (a + 1))))) = c
theorem lintegral_Ioc_eq_Ioi {X : Type u_1} (l : ) (f : ENNReal) (x : X) (b : X) :
∫⁻ (a : ) in Set.Ioc l (b x), f a = ∫⁻ (a : ) in Set.Ioi l, f a * {y : X | a b y}.indicator 1 x