theorem
ae_le_of_forallOn_le
{α : Type u_1}
{g f : α → ℝ}
{s : Set α}
[MeasurableSpace α]
{μ : MeasureTheory.Measure α}
(ms : MeasurableSet s)
(h₁ : ∀ x ∈ s, g x ≤ f x)
:
theorem
indicator_one_mul
{X : Type u_1}
{Y : Type u_2}
{x : X}
[MulZeroOneClass Y]
(f : X → Y)
[MeasurableSpace X]
(E : Set X)
:
theorem
IntegrableFin
{X : Type}
[Fintype X]
[MeasurableSpace X]
[MeasurableSingletonClass X]
{ℙᵤ : MeasureTheory.Measure X}
[MeasureTheory.IsFiniteMeasure ℙᵤ]
{f : X → ℝ}
:
theorem
bounded_thingy_on_s
{s : Set ℝ}
{f g h : ℝ → ℝ}
(ms : MeasurableSet s)
(Ih : MeasureTheory.IntegrableOn h s MeasureTheory.volume)
(Ig : MeasureTheory.IntegrableOn g s MeasureTheory.volume)
(dh : ∀ x ∈ s, h x ≤ f x)
(dg : ∀ x ∈ s, f x ≤ g x)
(mf : Measurable f)
:
theorem
integrableOn_one_div_two_mul_sqrt_plus
(m c : ℝ)
:
MeasureTheory.IntegrableOn (fun (x : ℝ) => 1 / (2 * √(x + c))) (Set.Icc (-c) m) MeasureTheory.volume
theorem
improper_integral_shift
(c : ℝ)
(f : ℝ → ℝ)
(cf : ContinuousOn f (Set.Ioi 0))
(If : MeasureTheory.IntegrableOn f (Set.Ici 0) MeasureTheory.volume)
(Iif : MeasureTheory.IntegrableOn (fun (x : ℝ) => f (x + c)) (Set.Ici (-c)) MeasureTheory.volume)
:
theorem
integrableOn_pow
{m a c : ℝ}
(mp : 0 < m)
(ha : a < -1)
(cp : 0 ≤ c)
:
MeasureTheory.IntegrableOn (fun (x : ℝ) => (x + c) ^ a) (Set.Ioi m) MeasureTheory.volume