theorem
Lean.Grind.OrderedAdd.add_le_right_iff
{M : Type u}
[LE M]
[Std.IsPreorder M]
[AddCommMonoid M]
[OrderedAdd M]
{a b : M}
(c : M)
:
theorem
Lean.Grind.OrderedAdd.add_le_left
{M : Type u}
[LE M]
[Std.IsPreorder M]
[AddCommMonoid M]
[OrderedAdd M]
{a b : M}
(h : a ≤ b)
(c : M)
:
theorem
Lean.Grind.OrderedAdd.add_le_right
{M : Type u}
[LE M]
[Std.IsPreorder M]
[AddCommMonoid M]
[OrderedAdd M]
{a b : M}
(c : M)
(h : a ≤ b)
:
theorem
Lean.Grind.OrderedAdd.add_le_add
{M : Type u}
[LE M]
[Std.IsPreorder M]
[AddCommMonoid M]
[OrderedAdd M]
{a b c d : M}
(hab : a ≤ b)
(hcd : c ≤ d)
:
theorem
Lean.Grind.OrderedAdd.add_lt_left
{M : Type u}
[LE M]
[Std.IsPreorder M]
[AddCommMonoid M]
[OrderedAdd M]
[LT M]
[Std.LawfulOrderLT M]
{a b : M}
(h : a < b)
(c : M)
:
theorem
Lean.Grind.OrderedAdd.add_lt_right
{M : Type u}
[LE M]
[Std.IsPreorder M]
[AddCommMonoid M]
[OrderedAdd M]
[LT M]
[Std.LawfulOrderLT M]
{a b : M}
(c : M)
(h : a < b)
:
theorem
Lean.Grind.OrderedAdd.add_lt_left_iff
{M : Type u}
[LE M]
[Std.IsPreorder M]
[AddCommMonoid M]
[OrderedAdd M]
[LT M]
[Std.LawfulOrderLT M]
{a b : M}
(c : M)
:
theorem
Lean.Grind.OrderedAdd.add_lt_right_iff
{M : Type u}
[LE M]
[Std.IsPreorder M]
[AddCommMonoid M]
[OrderedAdd M]
[LT M]
[Std.LawfulOrderLT M]
{a b : M}
(c : M)
:
theorem
Lean.Grind.OrderedAdd.nsmul_le_nsmul
{M : Type u}
[LE M]
[Std.IsPreorder M]
[NatModule M]
[OrderedAdd M]
{k : Nat}
{a b : M}
(h : a ≤ b)
:
theorem
Lean.Grind.OrderedAdd.nsmul_nonneg
{M : Type u}
[LE M]
[Std.IsPreorder M]
[NatModule M]
[OrderedAdd M]
{k : Nat}
{a : M}
(h : 0 ≤ a)
:
theorem
Lean.Grind.OrderedAdd.nsmul_le_nsmul_of_le_of_le_of_nonneg
{M : Type u}
[LE M]
[Std.IsPreorder M]
[NatModule M]
[OrderedAdd M]
{k₁ k₂ : Nat}
{x y : M}
(hk : k₁ ≤ k₂)
(h : x ≤ y)
(w : 0 ≤ x)
:
theorem
Lean.Grind.OrderedAdd.nsmul_lt_nsmul_iff
{M : Type u}
[LE M]
[Std.IsPreorder M]
[NatModule M]
[OrderedAdd M]
[LT M]
[Std.LawfulOrderLT M]
(k : Nat)
{a b : M}
(h : a < b)
:
theorem
Lean.Grind.OrderedAdd.nsmul_pos_iff
{M : Type u}
[LE M]
[Std.IsPreorder M]
[NatModule M]
[OrderedAdd M]
[LT M]
[Std.LawfulOrderLT M]
{k : Nat}
{a : M}
(h : 0 < a)
:
theorem
Lean.Grind.OrderedAdd.neg_le_iff
{M : Type u}
[LE M]
[Std.IsPreorder M]
[AddCommGroup M]
[OrderedAdd M]
{a b : M}
:
theorem
Lean.Grind.OrderedAdd.zsmul_nonneg
{M : Type u}
[LE M]
[Std.IsPreorder M]
[IntModule M]
[OrderedAdd M]
{k : Int}
{x : M}
(h : 0 ≤ k)
(hx : 0 ≤ x)
:
theorem
Lean.Grind.OrderedAdd.zsmul_pos_iff
{M : Type u}
[LE M]
[Std.IsPreorder M]
[IntModule M]
[OrderedAdd M]
[LT M]
[Std.LawfulOrderLT M]
(k : Int)
{x : M}
(h : 0 < x)
:
theorem
Lean.Grind.OrderedAdd.le_neg_iff
{M : Type u}
[LE M]
[Std.IsPreorder M]
[AddCommGroup M]
[OrderedAdd M]
{a b : M}
:
theorem
Lean.Grind.OrderedAdd.neg_nonneg_iff
{M : Type u}
[LE M]
[Std.IsPreorder M]
[AddCommGroup M]
[OrderedAdd M]
{a : M}
:
theorem
Lean.Grind.OrderedAdd.sub_nonneg_iff
{M : Type u}
[LE M]
[Std.IsPreorder M]
[AddCommGroup M]
[OrderedAdd M]
{a b : M}
:
theorem
Lean.Grind.OrderedAdd.neg_lt_iff
{M : Type u}
[LE M]
[Std.IsPreorder M]
[AddCommGroup M]
[OrderedAdd M]
[LT M]
[Std.LawfulOrderLT M]
{a b : M}
:
theorem
Lean.Grind.OrderedAdd.lt_neg_iff
{M : Type u}
[LE M]
[Std.IsPreorder M]
[AddCommGroup M]
[OrderedAdd M]
[LT M]
[Std.LawfulOrderLT M]
{a b : M}
:
theorem
Lean.Grind.OrderedAdd.neg_pos_iff
{M : Type u}
[LE M]
[Std.IsPreorder M]
[AddCommGroup M]
[OrderedAdd M]
[LT M]
[Std.LawfulOrderLT M]
{a : M}
:
theorem
Lean.Grind.OrderedAdd.sub_pos_iff
{M : Type u}
[LE M]
[Std.IsPreorder M]
[AddCommGroup M]
[OrderedAdd M]
[LT M]
[Std.LawfulOrderLT M]
{a b : M}
:
theorem
Lean.Grind.OrderedAdd.zsmul_nonpos
{M : Type u}
[LE M]
[Std.IsPreorder M]
[IntModule M]
[OrderedAdd M]
{k : Int}
{a : M}
(hk : 0 ≤ k)
(ha : a ≤ 0)
:
theorem
Lean.Grind.OrderedAdd.zsmul_le_zsmul
{M : Type u}
[LE M]
[Std.IsPreorder M]
[IntModule M]
[OrderedAdd M]
{a b : M}
{k : Int}
(hk : 0 ≤ k)
(h : a ≤ b)
:
theorem
Lean.Grind.OrderedAdd.zsmul_le_zsmul_of_le_of_le_of_nonneg_of_nonneg
{M : Type u}
[LE M]
[Std.IsPreorder M]
[IntModule M]
[OrderedAdd M]
{k₁ k₂ : Int}
{x y : M}
(hk : k₁ ≤ k₂)
(h : x ≤ y)
(w : 0 ≤ k₁)
(w' : 0 ≤ x)
:
theorem
Lean.Grind.OrderedAdd.zsmul_neg_iff
{M : Type u}
[LE M]
[Std.IsPreorder M]
[IntModule M]
[OrderedAdd M]
[LT M]
[Std.LawfulOrderLT M]
(k : Int)
{a : M}
(h : a < 0)
:
theorem
Lean.Grind.OrderedAdd.zsmul_lt_zsmul_iff
{M : Type u}
[LE M]
[Std.IsPreorder M]
[IntModule M]
[OrderedAdd M]
[LT M]
[Std.LawfulOrderLT M]
(k : Int)
{a b : M}
(h : a < b)
: