Upper bounds for multicolour Ramsey numbers

3 The Geometric Lemma

Lemma 21 Moments lemma
#

Lemma 3.2

Let \(U\) and \(U'\) be i.i.d. random variables taking values in a finite set \(X\), and let \(\sigma _1,\ldots ,\sigma _r \colon X \rightarrow \mathbb {R}^n\) be arbitrary functions. Then

\begin{equation*} \mathbb {E}\Big[ \big\langle \sigma _1(U),\sigma _1(U’) \big\rangle ^{\ell _1} \cdots \big\langle \sigma _r(U),\sigma _r(U’) \big\rangle ^{\ell _r} \Big] \ge 0. \end{equation*}

for every \((\ell _1,\dots ,\ell _r) \in \mathbb {Z}^r\) with \(\ell _1,\dots ,\ell _r \ge 0\).

Proof

To simplify the notation, let us write

\begin{equation*} \big\langle \sigma _1(U),\sigma _1(U’) \big\rangle ^{\ell _1} \cdots \big\langle \sigma _r(U), \sigma _r(U’) \big\rangle ^{\ell _r} = \prod _{i = 1}^\ell \big\langle \sigma _{a_i}(U), \sigma _{a_i}(U’) \big\rangle \end{equation*}

where \(\ell = \ell _1 + \cdots + \ell _r\) and \((a_1,\dots ,a_\ell )\) is such that \(\big| \big\{ i \in [\ell ] : a_i = j \big\} \big| = \ell _j\) for each \(j \in [r]\). Now set

\begin{equation*} Z = \sigma _{a_1}(U) \otimes \sigma _{a_2}(U) \otimes \cdots \otimes \sigma _{a_\ell }(U) \quad \text{and} \quad Z’ = \sigma _{a_1}(U’) \otimes \sigma _{a_2}(U’) \otimes \cdots \otimes \sigma _{a_\ell }(U’), \end{equation*}

and note that

\begin{equation*} \big\langle Z, Z’ \big\rangle = \prod _{i = 1}^\ell \big\langle \sigma _{a_i}(U), \sigma _{a_i}(U’) \big\rangle , \end{equation*}

since \(\langle u_1 \otimes \cdots \otimes u_r, v_1 \otimes \cdots \otimes v_r \rangle = \langle u_1, v_1 \rangle \cdots \langle v_r , u_r \rangle \) for any vectors \(u_i,v_i \in \mathbb {R}^n\). Finally, note that \(Z\) and \(Z'\) are independent and identically distributed random vectors, and therefore

\begin{equation*} \mathbb {E}\big[ \langle Z, Z’ \rangle \big] = \mathbb {E}_{Z'} \big[ \mathbb {E}_Z \big[ \langle Z, Z’ \rangle \big] \big] = \mathbb {E}_{Z'} \big[ \big\langle \mathbb {E}[Z], Z’ \big\rangle \big] = \big\langle \mathbb {E}[Z], \mathbb {E}[Z’] \big\rangle \ge 0, \end{equation*}

as required, where the final inequality holds because \(\mathbb {E}[Z] = \mathbb {E}[Z']\).

Remark 22

Let \(g(x):= cosh(\sqrt{x})\) where \(cosh(x)\) is defined by \(cosh(\sqrt{x})=\overunderset {\infty }{n=0}{\sum }\frac{x^n}{(2n)!}\), then:

  1. For all \(x\geq 0\), we have \(x \leq 2+cosh(\sqrt{x}) \leq 3e^{\sqrt{x}}\).

  2. For all \(x {\lt}0\), we have \(-1 \leq cosh(\sqrt{x})\leq 1\). In particular, \(2+cosh(x)\geq 1\) for all \(x\in \mathbb {R}\).

Proof

To prove (1), let \(x\geq 0\) then:

\begin{equation*} 2+cosh(\sqrt{x}) = 3 + \overunderset {\infty }{n=1}{\sum }\frac{x^n}{(2n)!}\geq 3 + \frac{x}{2}+\frac{x^2}{24}. \end{equation*}

However,

\begin{equation*} 3+\frac{x}{2}+\frac{x^2}{24}\geq x \iff \frac{1}{24}(x^2-12x+72)\geq 0 \iff \frac{1}{24}((x-6)^2+36)\geq 0,s \end{equation*}

which concludes the lower bound in the first point. To conclude (1), we note the following for \(x\geq 0\):

\begin{equation*} 3e^{\sqrt{x}}= 3\overunderset {\infty }{n=0}{\sum }\frac{x^{n/2}}{n!}\geq 3\overunderset {\infty }{n=0}{\sum }\frac{x^{n}}{(2n)!} \geq 2 + \overunderset {\infty }{n=0}{\sum }\frac{x^{n}}{(2n)!}= 2 + cosh(\sqrt{x}). \end{equation*}

To prove (2), note that for \(x{\lt}0\),

\begin{equation*} cosh(\sqrt{x})= \overunderset {\infty }{n=0}{\sum }\frac{x^n}{(2n)!}= \overunderset {\infty }{n=0}{\sum }\frac{(-1)^n \sqrt{-x}^{2n}}{(2n)!}= cos(\sqrt{-x}). \end{equation*}

(2) then follows by noting that \(cos(\sqrt{-x}) \in [-1,1]\) for all \(x{\lt}0\).

Lemma 23 Special function upper bound
#

Lemma 3.3

Let \(r \in \mathbb {N}\). If \(x_i \ge - 3r\) for all \(i \in [r]\), the function \(f \colon \mathbb {R}^r \rightarrow \mathbb {R}\) defined in 1 satisfies

\begin{equation*} f(x_1,\dots ,x_r) \le 3^r r \exp \bigg( \displaystyle \sum _{i = 1}^r \sqrt{ x_i + 3r } \bigg) \end{equation*}
Proof
\begin{equation*} f(x_1,\dots ,x_r)= \Bigl(\overunderset {r}{i=1}{\prod }(2+cosh\sqrt{x_i})\Bigr)\overunderset {r}{j=1}{\sum }\frac{x_j}{2+cosh \sqrt{x_j}} \overset {**}{\leq }r\Bigl(\overunderset {r}{i=1}{\prod } 3e^{\sqrt{x_i+3r}}\Bigr), \end{equation*}

To see (**), we write down upper bounds for all the factors of the LHS of (**). First, for every \(i \in [r]\), such that \(x_i \geq 0\), we note that \(cosh(\sqrt{x_i} )\leq cosh(\sqrt{x_i+3r})\) (which follows since all the coefficients in the taylor expansion of \(cosh(\sqrt{y}))\) are non-negative and thus \(cosh(\sqrt{y})\) is non-decreasing on the positive reals. In turn, \(2+cosh(\sqrt{x_i+3r}) \leq 3e^{\sqrt{x_i+3r}}\) by point 1 of the above remark. We conculde that if \(x_i \geq 0\), \(2 + cosh{\sqrt{x_i}} \leq 3 e^{\sqrt{x_i+3r}}\).

Next, we condiser the indices \(i \in [r]\) such that \(x_i{\lt}0\). In this case

\begin{equation*} 2+cosh(\sqrt{x_i})= 2 + cos(\sqrt{-x_i}) \leq 3 \leq 3 e^{\sqrt{x_i+3r}}, \end{equation*}

since \(x_i \geq -3r\). It remains to show that \(\frac{x_j}{2+cosh(\sqrt{x_j})} \leq 1\) for every \(j \in [r]\). If \(x_j\geq 0\) this follows directly from point (1) in the above remark. If \(x_j{\lt}0\), note that the numerator of the fraction is negative while the denominator is a positive number between 1 and 3 by point(2) of the remark above.

Lemma 24 Special function lower bound
#

Lemma 3.3

Let \(r \in \mathbb {N}\). If there exists an \(i \in [r]\) with \(x_i \le - 3r\), the function \(f \colon \mathbb {R}^r \rightarrow \mathbb {R}\) defined in 1 satisfies

\begin{equation*} f(x_1,\dots ,x_r) \le -1 \end{equation*}
Proof

Let \(i \in [r]\) satisfy \(x_i \leq -3r\). Note that if \(x\geq 0\), then \(\frac{x}{2+cosh(\sqrt{x})}\leq 1\) by point (1) of the above remark. Trivially, we have \(\frac{x}{2+cosh{\sqrt{x}}}{\lt}0\leq 1\) for \(x{\lt}0\) (note that \(2+cosh(\sqrt{x})\geq 1\).) Therefore, we have

\begin{equation*} \underset {j \in [r], j \neq i}{\sum } \frac{x_j}{2+cosh(\sqrt{x_j})} \leq r-1. \end{equation*}

On the other hand, we know that \(\frac{x_i}{2+cosh(\sqrt{x_i})} \leq \frac{x_i}{3}\) by part (2) in the remark above and therefore,

\begin{equation*} \overunderset {r}{j=1}{\sum }\frac{x_j}{2+cosh(\sqrt{x_j})}\leq \frac{x_i}{3}+r-1\leq -1. \end{equation*}

Finally we write

\begin{equation*} f(x_1,\dots ,x_r) = \Bigl(\overunderset {r}{i=1}{\prod }(2+cosh\sqrt{x_i})\Bigr)\overunderset {r}{j=1}{\sum }\frac{x_j}{2+cosh \sqrt{x_j}} \leq -1, \end{equation*}

since the sum in the last term is \(\leq -1\) while the product is at least \(1\) (each factor in the product is at least 1).

Remark 25
#

The key idea in the two lemmas above was to find an entire function, \(2 + \cosh \sqrt{x}\), which \((a)\) has a Taylor expansion at \(x = 0\) with non-negative coefficients; \((b)\) is bounded on the negative real axis; and \((c)\) does not grow too quickly on the positive axis. The Phragmén–Lindelöf theorem implies that functions satisfying \((a)\) and \((b)\) must grow at least as fast as \(\exp \big( \Omega (\sqrt{x}) \big)\) on the positive real axis. Thus the bound on the growth of \(f\) given by the lemma is essentially best possible for constructions of this type.

Lemma 26 Geometric lemma

Lemma 3.1

Let \(r, n\in \mathbb {N}\). Set \(\beta = 3^{-4r}\) and \(C = 4r^{3/2}\). Let \(U\) and \(U'\) be i.i.d. random variables taking values in a finite set \(X\), and let \(\sigma _1,\ldots ,\sigma _r \colon X \rightarrow \mathbb {R}^n\) be arbitrary functions. There exists \(\lambda \ge -1\) and \(i\in [r]\) such that

\begin{equation*} \mathbb {P}\Big( \big\langle \sigma _i(U),\sigma _i(U’) \big\rangle \ge \lambda \, \text{ and } \, \big\langle \sigma _j(U), \sigma _j(U’) \big\rangle \ge -1 \, \text{ for all } \, j \ne i \Big) \ge \beta e^{- C\sqrt{\lambda + 1}}. \end{equation*}
Proof

For each \(i \in [r]\), define \(Z_i = 3r\big\langle \sigma _i(U),\sigma _i(U') \big\rangle \), and let \(E\) be the event that \(Z_i \ge -3r\) for every \(i \in [r]\).

Consider two cases:

First assume \(\mathbb {P}(E) \ge \beta \). Note that

\begin{equation*} \mathbb {P}(E) = \mathbb {P}\Big( Z_i \ge - 3r \, \text{ for all } \, i \in [r] \Big), \end{equation*}

so with \(\lambda = -1\),

\begin{align*} \beta e^{-C\times 0} & = \beta \\ & \le \mathbb {P}(E)\\ & = \mathbb {P}\Big(3r\big\langle \sigma _i(U),\sigma _i(U’) \big\rangle \ge -3r \text{ for all }i\Big)\\ & = \mathbb {P}\Big( \big\langle \sigma _i(U),\sigma _i(U’) \big\rangle \ge \lambda \, \text{ and } \, \big\langle \sigma _j(U), \sigma _j(U’) \big\rangle \ge -1 \, \text{ for all } \, j \ne i \Big) \end{align*}

hence the claimed inequality holds.

Now, assume \(\mathbb {P}(E) \le \beta \) and assume for the sake of a contradiction that for all \(\lambda \geq -1\),

\begin{align} \label{eq:max:big:and:E:no} \mathbb {P}\left(E \cap \left( \bigcup _{i \in [r]} \left\{ \big\langle \sigma _i(U),\sigma _i(U’) \big\rangle \ge \lambda \right\} \right)\right) {\lt} \beta r e^{-C\sqrt{\lambda + 1}}. \end{align}

Observe that, since \(x \le 2 + \cosh \sqrt{x}\) (Theorem 14) and using Theorem 21 and linearity of expectation,

\[ \mathbb {E}\big[ f\big( Z_1,\ldots ,Z_r \big) \big] \ge 0 \]

We hence have

\begin{align*} 0 & \le \mathbb {E}\big[ f\big( Z_1,\ldots ,Z_r \big) \big]\\ & = \mathbb {E}\big[ f\big( Z_1,\ldots ,Z_r \big) \mathbf{1}_E \big] + \mathbb {E}\big[ f\big( Z_1,\ldots ,Z_r \big) \mathbf{1}_{E^c} \big]\\ & \le \mathbb {E}\left[ 3^r r \exp \bigg( \displaystyle \sum _{i = 1}^r \sqrt{ Z_i + 3r } \bigg) \mathbf{1}_E \right] + \mathbb {E}\big[-1 \cdot \mathbf{1}_{E^c} \big] \end{align*}

where we use Theorem 23 to bound the case for \(E\), and Theorem 24 for \(E^c\). It follows that

\begin{equation} \label{eq:eventE:inequality} 1 - \mathbb {P}(E) \le 3^r r \cdot \mathbb {E}\bigg[ \exp \bigg( \sum _{i = 1}^r \sqrt{ Z_i + 3r } \bigg) \mathbf{1}_E \bigg]. \end{equation}
3

Let \(M = \max \big\{ \big\langle \sigma _i(U),\sigma _i(U') \big\rangle : i \in [r] \big\} \). For any constant \(c \le C - 1\), we have

\begin{align} \exp (c\sqrt{M+1})\hbox{$1\mkern -6.5mu1$}_E& = \hbox{$1\mkern -6.5mu1$}_E \Bigl(e^{c\sqrt{1-1}}+ \int _{-1}^M \frac{ce^{c\sqrt{\lambda +1}}}{2\sqrt{\lambda +1}} d\lambda \Bigr)\\ & = \hbox{$1\mkern -6.5mu1$}_E+ \int _{-1}^{\infty } \hbox{$1\mkern -6.5mu1$}_{E,\{ M\geq \lambda \} }\frac{ce^{c\sqrt{\lambda +1}}}{2\sqrt{\lambda +1}} d\lambda . \end{align}

Given any \(c \leq C-1\) we take the expected value of both sides of the previous equation and apply Tonelli’s theorem to obtain:

\begin{align*} \mathbb {E}\Big[ \exp \big( c \sqrt{M + 1} \big) \mathbf{1}_E \Big] & \\ & \le \, \mathbb {P}(E) + \int _{-1}^\infty \mathbb {P}\Big( \big\{ M \ge \lambda \big\} \cap E \Big) \cdot \frac{c}{2\sqrt{\lambda + 1}} \cdot e^{c \sqrt{\lambda + 1}} \, \mathrm{d}\lambda \\ & \le \, \beta + \int _{-1}^\infty \frac{\beta r c}{2\sqrt{\lambda + 1}} \cdot e^{- C\sqrt{\lambda + 1}+c\sqrt{\lambda +1}} \, \mathrm{d}\lambda \\ & \le \, \beta + \beta r \int _{-1}^\infty \frac{c}{2\sqrt{\lambda + 1}} \cdot e^{- \sqrt{\lambda + 1}} \, \mathrm{d}\lambda \\ & \le \, \beta (cr + 1), \end{align*}

where in the second inequality we used (Equation 2) and \(\mathbb {P}(E) \le \beta \); in the third we used \(c \le C - 1\); and in the last inequality we used the fact that \(\int _0^\infty \frac{1}{2\sqrt{x}} e^{-\sqrt{x}} \, \mathrm{d}x = 1\). Note that the second and third inequalities rely on the non-negativity of the integrand. In particular, applying this with \(c = \sqrt{3}r^{3/2}\), and recalling that \(C = 4r^{3/2} \ge c + 1\) and \(\beta = 3^{-4r}\), it follows that

\begin{align} 1 - \mathbb {P}(E) & \le 3^r r \cdot \mathbb {E}\bigg[ \exp \bigg( \sum _{i = 1}^r \sqrt{ Z_i + 3r } \bigg) \mathbf{1}_E \bigg]\\ & \le 3^r r \cdot \mathbb {E}\bigg[ \exp \bigg( r \cdot \max _{i \in [r]} \sqrt{ Z_i + 3r } \bigg) \mathbf{1}_E \bigg]\\ & = 3^r r \cdot \mathbb {E}\bigg[ \exp \bigg( r \cdot \sqrt{ 3r} \cdot \sqrt{ (M + 1) } \bigg) \mathbf{1}_E \bigg]\\ & \le 3^r r \cdot \beta (r^{2}\sqrt{3r} + 1) \le 1/3, \end{align}

which contradicts our assumption that \(\mathbb {P}(E) \le \beta \).

Hence, there exists \(\lambda \ge -1\) such that

\begin{align} \label{eq:max:big:and:E} \beta r e^{-C\sqrt{\lambda + 1}} & \le \mathbb {P}\left(E \cap \left( \bigcup _{i \in [r]} \left\{ \big\langle \sigma _i(U),\sigma _i(U’) \big\rangle \ge \lambda \right\} \right) \right) \\ & \le \sum _{i \in [r]} \mathbb {P}\left(E \cap \left\{ \big\langle \sigma _i(U),\sigma _i(U’) \big\rangle \ge \lambda \right\} \right)\\ & \le r \cdot \max _{i \in [r]} \mathbb {P}\left(E \cap \left\{ \big\langle \sigma _i(U),\sigma _i(U’) \big\rangle \ge \lambda \right\} \right) , \end{align}

and therefore there exists an \(i \in [r]\) as required.