Upper bounds for multicolour Ramsey numbers

4 The Book Theorem

Lemma 16 Key lemma (Lemma 2.2 in Balister et al.)
#

Let \(r, n\in \mathbb {N}\). Set \(\beta = 3^{-4r}\) and \(C = 4r^{3/2}\).

Let  \(\chi \) be an  \(r\)-colouring of  \(E(K_n)\), let  \(X,Y_1,\ldots ,Y_r \subset V(K_n)\) be non-empty sets of vertices, and let \(\alpha _1,\ldots ,\alpha _r {\gt} 0\). There exists a vertex \(x \in X\), a colour \(\ell \in [r]\), sets \(X' \subset X\) and  \(Y'_1,\ldots ,Y'_r\, \) with  \(Y'_i \subset N_i(x) \cap Y_i\, \) for each \(i \in [r]\), and  \(\lambda \ge -1\), such that

\begin{equation} \label{eq:key:ell} \beta e^{- C \sqrt{\lambda + 1}} |X| \le |X'| \qquad \text{and} \qquad p_\ell (X,Y_\ell ) + \lambda \alpha _\ell \le p_\ell ( X', Y'_\ell ) , \end{equation}
13

and moreover

\begin{equation} \label{eq:key:alli} |Y'_i| = p_i(X,Y_i) |Y_i| \qquad \text{and} \qquad p_i(X,Y_i) - \alpha _i \le p_i( X', Y'_i ) \end{equation}
14

for every \(i \in [r]\).

Proof

For each colour \(i \in [r]\), define a function \(\sigma _i \colon X \rightarrow \mathbb {R}^{\cup _i Y_i}\) as follows: for each \(x \in X\), choose a set \(N'_i(x) \subset N_i(x) \cap Y_i\) of size exactly \(p_i|Y_i|\), where \(p_i = p_i(X,Y_i)\), and set

\[ \sigma _i(x) = \frac{\hbox{$1\mkern -6.5mu1$}_{N'_i(x)} - p_i\hbox{$1\mkern -6.5mu1$}_{Y_i}}{\sqrt{\alpha _ip_i|Y_i|}}, \]

where \(\hbox{$1\mkern -6.5mu1$}_S \in \{ 0,1\} ^{\cup _i Y_i}\) denotes the indicator function of the set \(S\). Note that, for any \(x,y\in X\),

\[ \lambda \le \big\langle \sigma _i(x),\sigma _i(y) \big\rangle \quad \Leftrightarrow \quad \big( p_i + \lambda \alpha _i \big) p_i |Y_i| \le |N'_i(x) \cap N'_i(y)|. \]

Indeed, for every \(x,y\in X\), we have

\begin{multline} \begin{aligned} \alpha _ip_i|Y_i| \langle \sigma _i(x),\sigma _i(y) \rangle & = \langle \hbox{$1\mkern -6.5mu1$}_{N'_i(x)}- p_i\hbox{$1\mkern -6.5mu1$}_{Y_i},\hbox{$1\mkern -6.5mu1$}_{N'_i(y)}- p_i\hbox{$1\mkern -6.5mu1$}_{Y_i}\rangle \\ & = \Bigl(\big\langle \hbox{$1\mkern -6.5mu1$}_{N'_i(x)},\hbox{$1\mkern -6.5mu1$}_{N'_i(y)}\big\rangle +p_i^2\langle \hbox{$1\mkern -6.5mu1$}_{Y_i}, \hbox{$1\mkern -6.5mu1$}_{Y_i}\rangle - p_i \langle \hbox{$1\mkern -6.5mu1$}_{N'_i(x)},\hbox{$1\mkern -6.5mu1$}_{Y_i}\rangle - p_i \langle \hbox{$1\mkern -6.5mu1$}_{N'_i(y)},\hbox{$1\mkern -6.5mu1$}_{Y_i}\rangle \Bigr)\\ & = \Bigl(|N’_i(x) \cap N’_i(y)|-p_i^2|Y_i| \Bigr), \end{aligned}\end{multline}

Where the last ineqaulity follows since \(|N'_i(x)|= N'_i(y)|= p_i|Y_i|\) and both sets are subsets of \(Y_i\). Now, by Lemma 15, there exists \(\lambda \ge -1\) and colour \(\ell \in [r]\) such that

\begin{equation} \label{eq: geometric-app} \beta e^{- C\sqrt{\lambda + 1}} \le \mathbb {P}\Big( \lambda \le \big\langle \sigma _\ell (U),\sigma _\ell (U') \big\rangle \, \text{ and } \, -1 \le \big\langle \sigma _i(U), \sigma _i(U') \big\rangle \, \text{ for all } \, i \ne \ell \Big) . \end{equation}
16

where \(U\), \(U'\) are independent random variables distributed uniformly in the set \(X\). We claim that there exists a vertex \(x \in X\) and a set \(X' \subset X\) such that,

\[ \beta e^{- C \sqrt{\lambda + 1}} |X| \le |X'| \]

and

\[ \big( p_\ell + \lambda \alpha _\ell \big) p_\ell |Y_\ell | \le |N'_\ell (x) \cap N'_\ell (y)| \]

for every \(y \in X'\), and

\[ \big( p_i - \alpha _i \big) p_i |Y_i| \le |N'_i(x) \cap N'_i(y)| \]

for every \(y \in X'\) and \(i \in [r]\). To see this, we let

\[ P= \Biggl\{ (x,x'): x,x' \in X , \lambda \le \big\langle \sigma _\ell (x),\sigma _\ell (x') \big\rangle \, \text{ and } \, -1 \le \big\langle \sigma _i(x), \sigma _i(x') \big\rangle \, \text{ for all } \, i \ne \ell \Biggr\} . \]

Since \(U\) and \(U'\) are independent and uniformly distributed over \(x\), Equation 16 implies that

\begin{equation} |P|\geq \beta e^{-C\sqrt{\lambda + 1}}|X|^2. \end{equation}
17

However, by averaging, there must then exist a vertex \(x \in X\) such that:

\begin{equation} |X'|:=\bigl|\{ y: (x,y) \in P \} \bigr| \ge \frac{\beta e^{-C\sqrt{\lambda +1}}|X|^2}{|X|}\geq \beta e^{-C\sqrt{\lambda +1}}|X|. \end{equation}
18

We can them simply pick this \(X'\) to be the desired subset. Setting \(Y'_i = N'_i(x)\) for each \(i \in [r]\), it follows that

\begin{multline} \begin{aligned} p_\ell (X,Y_\ell ) + \lambda \alpha _\ell & = \frac{ \big( p_\ell + \lambda \alpha _\ell \big) p_\ell |Y_\ell |}{p_\ell |Y_\ell |}\\ & = \frac{ \big( p_\ell + \lambda \alpha _\ell \big) p_\ell |Y_\ell |}{| N'_\ell (x)|}\\ & = \min \bigg\{ \frac{ \big( p_\ell + \lambda \alpha _\ell \big) p_\ell |Y_\ell |}{| N'_\ell (x)|} : x’ \in X’ \bigg\} \\ & \le \min \bigg\{ \frac{|N'_\ell (x') \cap N'_\ell (x)|}{| N'_\ell (x)|} : x’ \in X’ \bigg\} \\ & = \min \bigg\{ \frac{|N_\ell (x') \cap N'_\ell (x)|}{| N'_\ell (x)|} : x’ \in X’ \bigg\} \\ & = p_\ell \big( X’, N’_\ell (x) \big) = p_\ell \big( X’, Y’_\ell \big) \\ \end{aligned}\end{multline}

and

\[ p_i(X,Y_i) - \alpha _i \le \qquad p_i\big( X', Y'_i \big) \]

for every \(i \in [r]\), as required.

Algorithm 17 The Multicolour Book Algorithm in Balister et al.
#

Set \(T_1 = \cdots = T_r = \emptyset \), and repeat the following steps until either \(X = \emptyset \) or \(\max \big\{ |T_i| : i \in [r] \big\} = t\).

  1. Applying the key lemma: let the vertex \(x \in X\), the colour \(\ell \in [r]\), the sets \(X' \subset X\) and \(Y'_1,\ldots ,Y'_r\), and \(\lambda \ge -1\) be given by Lemma ??, applied with

    \begin{equation} \label{def:alpha} \alpha _i = \frac{p_i(X,Y_i) - p_0 + \delta }{t} \end{equation}
    20

    for each \(i \in [r]\), and go to Step 2.

  2. Colour step: If \(\lambda \le \lambda _0\), then choose a colour \(j \in [r]\) such that the set

    \[ X'' = N_j(x) \cap X' \]

    has at least \((|X'| - 1)/r\) elements, and update the sets as follows:

    \[ X \rightarrow X'', \qquad Y_j \rightarrow Y'_j \qquad \text{and} \qquad T_j \rightarrow T_j \cup \{ x\} \]

    and go to Step 1. Otherwise go to Step 3.

  3. Density-boost step: If \(\lambda {\gt} \lambda _0\), then we update the sets as follows:

    \[ X \rightarrow X' \qquad \text{and} \qquad Y_\ell \rightarrow Y'_\ell , \]

    and go to Step 1.

Lemma 18 Lemma 4.1 in Balister et al.

For each \(i \in [r]\) and \(s \in \mathbb {N}\),

\begin{equation} \label{eq:pi:lower:bound} p_i(s) - p_0 + \delta \, \ge \, \delta \cdot \bigg( 1 - \frac{1}{t} \bigg)^{t} \prod _{j \in \mathcal{B}_i(s)} \bigg( 1 + \frac{\lambda (j)}{t} \bigg). \end{equation}
21

Proof

Note first that if \(Y_i(s+1) = Y_i(s)\), then \(p_i(s+1) \ge p_i(s)\), since the minimum degree does not decrease when we take a subset of \(X(s)\). When we perform a colour step in colour \(i\), we have \(p_i(s+1) \ge p_i(s) - \alpha _i(s)\), by Lemma ??, and hence

\[ p_i(s+1) - p_0 + \delta \ge \bigg( 1 - \frac{1}{t} \bigg) \big( p_i(s) - p_0 + \delta \big), \]

by our choice of \(\alpha _i(s)\). Similarly, when we perform a density-boost step in colour \(i\) we have \(p_i(s+1) \ge p_i(s) + \lambda (s) \alpha _i(s)\), by Lemma ??, and hence

\[ p_i(s+1) - p_0 + \delta \ge \bigg( 1 + \frac{\lambda (s)}{t} \bigg) \big( p_i(s) - p_0 + \delta \big). \]

Recalling that there are at most \(t\) colour steps in colour \(i\), and that \(p_i(0) \ge p_0\), by the definition ?? of \(p_0\), the claimed bound follows.

Before continuing, let’s note a couple of important consequences of Lemma 18. First, it implies that neither \(p_i(s)\) nor \(\alpha _i(s)\) can get too small.

Lemma 19 Lemma 4.2 in Balister et al.

If  \(t \ge 2\), then

\[ p_i(s) \, \ge \, p_0 - \frac{3\delta }{4} \qquad \text{and} \qquad \alpha _i(s) \, \ge \, \frac{\delta }{4t} \]

for every \(i \in [r]\) and \(s \in \mathbb {N}\).

Proof

Both bounds follow immediately from 21 and the definition of \(\alpha _i(s)\).

It also implies the following bound on the number of density-boost steps.

Lemma 20 Lemma 4.3 in Balister et al.

If  \(t \ge \lambda _0\) and  \(\delta \le 1/4\), then

\[ |\mathcal{B}_i(s)| \le \frac{4 \log (1/\delta )}{\lambda _0} \cdot t \]

for every \(i \in [r]\) and \(s \in \mathbb {N}\).

Proof

Since \(\lambda (j) {\gt} \lambda _0\) for every \(j \in \mathcal{B}_i(s)\), and \(p_i(s) \le 1\), it follows from 21 that

\[ \frac{\delta }{4} \bigg( 1 + \frac{\lambda _0}{t} \bigg)^{|\mathcal{B}_i(s)|} \le 1 + \delta . \]

Since \(t \ge \lambda _0\) and \(\delta \le 1/4\), the claimed bound follows.

Lemmas 19 and 20 together provide a lower bound on the size of the set \(Y_i(s)\).

Lemma 21 Lemma 4.4 in Balister et al.

If  \(t \ge 2\), then

\[ |Y_i(s)| \ge \bigg( p_0 - \frac{3\delta }{4} \bigg)^{t + |\mathcal{B}_i(s)|} |Y_i(0)| \]

for every \(i \in [r]\) and \(s \in \mathbb {N}\).

Proof

Note that \(Y_i(j+1) \ne Y_i(j)\) for at most \(t + |\mathcal{B}_i(s)|\) of the first \(s\) steps, and for those steps we have

\[ |Y_i(j+1)| = p_i(j) |Y_i(j)| \ge \bigg( p_0 - \frac{3\delta }{4} \bigg) |Y_i(j)|, \]

by 14 and Lemma 19.

Finally, we need to bound the size of the set \(X(s)\). To do so, set \(\varepsilon = (\beta / r) e^{- C \sqrt{\lambda _0 + 1}}\), and define \(\mathcal{B}(s) = \mathcal{B}_1(s) \cup \cdots \cup \mathcal{B}_r(s)\) to be the set of all density-boost steps.

Lemma 22 Lemma 4.5 in Balister et al.

For each \(s \in \mathbb {N}\),

\begin{equation} \label{eq:X:lower:bound} |X(s)| \ge \varepsilon ^{rt + |\mathcal{B}(s)|} \exp \bigg( - C \sum _{j \in \mathcal{B}(s)} \sqrt{\lambda (j)+1}\, \, \bigg) |X(0)| - rt. \end{equation}
22

Proof

If \(\lambda (j) \le \lambda _0\), then by 13 and Step 2 of the algorithm we have

\[ |X(j+1)| \ge \frac{\beta e^{- C \sqrt{\lambda _0 + 1}}}{r} \cdot |X(j)| - 1 = \varepsilon |X(j)| - 1. \]

On the other hand, if \(\lambda (j) {\gt} \lambda _0\), then \(j \in \mathcal{B}(s)\), and we have

\[ |X(j+1)| \ge \beta e^{- C \sqrt{\lambda (j) + 1}} |X(j)|, \]

by 13 and Step 3 of the algorithm. Since there are at most \(rt\) colour steps, and \(\beta \ge \varepsilon \), the claimed bound follows.

We will use the following lemma to bound the right-hand side of 22.

Lemma 23 Lemma 4.6 in Balister et al.

If  \(t \ge \lambda _0 / \delta {\gt} 0\) and  \(\delta \le 1/4\), then

\[ \sum _{j \in \mathcal{B}(s)} \sqrt{\lambda (j)} \le \frac{7r \log (1/\delta )}{\sqrt{\lambda _0}} \cdot t \]

for every \(s \in \mathbb {N}\).

Proof

Observe first that, by Lemma 18, we have

\begin{equation} \label{eq:B:condition} \frac{\delta }{4} \prod _{j \in \mathcal{B}_i(s)} \bigg( 1 + \frac{\lambda (j)}{t} \bigg) \le 1 + \delta \end{equation}
23

for each \(i \in [r]\). Note also that \(\lambda _0 \le \lambda (j) \le 5t/\delta \) for every \(j \in \mathcal{B}(s)\), where the lower bound holds by the definition of \(\mathcal{B}(s)\), and the upper bound by 23 and since \(\delta \le 1/4\). Now, since \(\log (1+x) \ge \min \{ x/2,1\} \) for all \(x {\gt} 0\), it follows that

\begin{equation} \label{eq:not:convexity} \frac{ \sqrt{\lambda (j)} }{\log (1 + \lambda (j)/t) } \le \max \bigg\{ \frac{ 2t }{ \sqrt{\lambda _0} }, \, \sqrt{ \frac{5t}{\delta }} \bigg\} \le \frac{ 3t }{ \sqrt{\lambda _0} }, \end{equation}
24

where in the second inequality we used our assumption that \(t \ge \lambda _0 / \delta \). It now follows that

\[ \sum _{j \in \mathcal{B}_i(s)} \sqrt{\lambda (j)} \le \frac{ 3t }{ \sqrt{\lambda _0} } \sum _{j \in \mathcal{B}_i(s)} \log \bigg( 1 + \frac{\lambda (j)}{t} \bigg) \le \frac{7 \log (1/\delta )}{\sqrt{\lambda _0}} \cdot t, \]

where the first inequality holds by 24, and the second follows from 23, since \(\delta \le 1/4\). Summing over \(i \in [r]\), we obtain the claimed bound.

Theorem 24

Let  \(\chi \) be an  \(r\)-colouring of  \(E(K_n)\), and let  \(X,Y_1,\ldots ,Y_r \subset V(K_n)\). For every \(p {\gt} 0\) and \(\mu \ge 2^{10} r^3\), and every \(t,m \in \mathbb {N}\) with \(t \ge \mu ^5 / p\), the following holds. If

\[ |N_i(x) \cap Y_i| \ge p|Y_i| \]

for every \(x \in X\) and \(i \in [r]\), and moreover

\[ |X| \ge \bigg( \frac{\mu ^2}{p} \bigg)^{\mu r t} \qquad \text{and} \qquad |Y_i| \ge \bigg( \frac{e^{2^{13} r^3 / \mu ^2}}{p} \bigg)^t \, m, \]

then \(\chi \) contains a monochromatic \((t,m)\)-book.

Proof

Recall that we are given an \(r\)-colouring \(\chi \) of \(E(K_n)\) and a collection of sets \(X,Y_1,\ldots ,Y_r \subset V(K_n)\) with

\begin{equation} \label{eq:book:thm:conditions} |X| \ge \bigg( \frac{\mu ^2}{p} \bigg)^{\mu r t} \qquad \text{and} \qquad |Y_i| \ge \bigg( \frac{e^{2^{13} r^3 / \mu ^2}}{p} \bigg)^t \, m \end{equation}
25

for each \(i \in [r]\), for some \(p {\gt} 0\), \(\mu \ge 2^{10} r^3\) and \(t,m \in \mathbb {N}\) with \(t \ge \mu ^5 / p\), and moreover

\begin{equation} \label{eq:book:thm:min:degree} |N_i(x) \cap Y_i| \ge p|Y_i| \end{equation}
26

for every \(x \in X\) and \(i \in [r]\). We will run the multicolour book algorithm with

\[ \delta = \frac{p}{\mu ^2} \qquad \text{and} \qquad \lambda _0 = \bigg( \frac{\mu \log (1/\delta )}{8C} \bigg)^2, \]

where \(C = 4r^{3/2}\) (as before), and show that it ends with

\[ \max \big\{ |T_i(s)| : i \in [r] \big\} = t \qquad \text{and} \qquad \min \big\{ |Y_i(s)| : i \in [r] \big\} \ge m, \]

and therefore produces a monochromatic \((t,m)\)-book.

To do so, we just need to bound the sizes of the sets \(X(s)\) and \(Y_i(s)\) from below. Observe that \(t \ge \lambda _0\) and \(\delta \le 1/4\), and therefore, by Lemma 20, that

\begin{equation} \label{eq:Bi:final:bound} |\mathcal{B}_i(s)| \, \le \, \frac{4 \log (1/\delta )}{\lambda _0} \cdot t \, = \, \frac{2^{12} r^3}{\mu ^2 \log (1/\delta )} \cdot t \, \le \, t \end{equation}
27

for every \(i \in [r]\) and \(s \in \mathbb {N}\). Since \(p_0 \ge p\), by 26 and the definition of \(p_0\), it follows that

\[ |Y_i(s)| \, \ge \, \bigg( p - \frac{3\delta }{4} \bigg)^{t + |\mathcal{B}_i(s)|} |Y_i| \, \ge \, e^{-2\delta t / p} \, p^{|\mathcal{B}_i(s)|} \, \big( e^{2^{13} r^3 / \mu ^2} \big)^t \, m, \]

where the first inequality holds by Lemma 21, and the second by 25 and 27. Noting that \(p^{|\mathcal{B}_i(s)|} \ge e^{-2^{12} r^3 t / \mu ^2}\), by 27, and that \(\delta / p = 1/\mu ^2\), it follows that

\[ |Y_i(s)| \, \ge \, e^{-2 t / \mu ^2} \big( e^{2^{12} r^3 / \mu ^2} \big)^t \, m \, \ge \, m, \]

as claimed. To bound \(|X(s)|\), recall 22 and observe that

\[ \varepsilon ^{rt + |\mathcal{B}(s)|} \ge \bigg( \frac{\beta }{r} \cdot e^{- C \sqrt{\lambda _0 + 1}} \bigg)^{2rt} \ge \big( e^{- 4C \sqrt{\lambda _0}} \big)^{rt} = \delta ^{\mu r t/2} = \bigg( \frac{\mu ^2}{p} \bigg)^{-\mu r t / 2}, \]

where the first step holds because \(\varepsilon = (\beta / r) e^{- C \sqrt{\lambda _0 + 1}}\) and \(|\mathcal{B}(s)| \le rt\), by 27, and the second step holds because \(\beta = 3^{-4r}\) and \(\lambda _0 \ge 2^{10} r^3\). Moreover, we have

\[ \sum _{j \in \mathcal{B}(s)} \sqrt{\lambda (j)+1} \le \frac{8r \log (1/\delta )}{\sqrt{\lambda _0}} \cdot t = \frac{2^6Crt}{\mu }, \]

by Lemma 23 and our choice of \(\lambda _0\), and therefore

\[ |X(s)| \ge \bigg( \frac{\mu ^2}{p} \bigg)^{\mu r t / 2} \exp \bigg( - \frac{2^6C^2rt}{\mu } \bigg) - rt {\gt} 0, \]

for every \(s \in \mathbb {N}\), by Lemma 22 and since \(\mu \ge 2^{10} r^3\) and \(C = 4r^{3/2}\). It follows that the algorithm produces a monochromatic \((t,m)\)-book, as claimed.