For each colour \(i \in [r]\), define a function \(\sigma _i \colon X \rightarrow \mathbb {R}^{\cup _i Y_i}\) as follows: for each \(x \in X\), choose a set \(N'_i(x) \subset N_i(x) \cap Y_i\) of size exactly \(p_i|Y_i|\), where \(p_i = p_i(X,Y_i)\), and set
\begin{equation*} \sigma _i(x) = \frac{\hbox{$1\mkern -6.5mu1$}_{N'_i(x)} - p_i\hbox{$1\mkern -6.5mu1$}_{Y_i}}{\sqrt{\alpha _ip_i|Y_i|}}, \end{equation*}
where \(\hbox{$1\mkern -6.5mu1$}_S \in \{ 0,1\} ^{\cup _i Y_i}\) denotes the indicator function of the set \(S\). Note that, for any \(x,y\in X\),
\begin{equation*} \lambda \le \big\langle \sigma _i(x),\sigma _i(y) \big\rangle \quad \Leftrightarrow \quad \big( p_i + \lambda \alpha _i \big) p_i |Y_i| \le |N’_i(x) \cap N’_i(y)|. \end{equation*}
Indeed, for every \(x,y\in X\), we have
\begin{multline} \begin{aligned} \alpha _ip_i|Y_i| \langle \sigma _i(x),\sigma _i(y) \rangle & = \langle \hbox{$1\mkern -6.5mu1$}_{N'_i(x)}- p_i\hbox{$1\mkern -6.5mu1$}_{Y_i},\hbox{$1\mkern -6.5mu1$}_{N'_i(y)}- p_i\hbox{$1\mkern -6.5mu1$}_{Y_i}\rangle \\ & = \Bigl(\big\langle \hbox{$1\mkern -6.5mu1$}_{N'_i(x)},\hbox{$1\mkern -6.5mu1$}_{N'_i(y)}\big\rangle +p_i^2\langle \hbox{$1\mkern -6.5mu1$}_{Y_i}, \hbox{$1\mkern -6.5mu1$}_{Y_i}\rangle - p_i \langle \hbox{$1\mkern -6.5mu1$}_{N'_i(x)},\hbox{$1\mkern -6.5mu1$}_{Y_i}\rangle - p_i \langle \hbox{$1\mkern -6.5mu1$}_{N'_i(y)},\hbox{$1\mkern -6.5mu1$}_{Y_i}\rangle \Bigr)\\ & = \Bigl(|N’_i(x) \cap N’_i(y)|-p_i^2|Y_i| \Bigr), \end{aligned}\end{multline}
Where the last ineqaulity follows since \(|N'_i(x)|= N'_i(y)|= p_i|Y_i|\) and both sets are subsets of \(Y_i\). Now, by Theorem 26, there exists \(\lambda \ge -1\) and colour \(\ell \in [r]\) such that
\begin{equation} \label{eq: geometric-app} \beta e^{- C\sqrt{\lambda + 1}} \le \mathbb {P}\Big( \lambda \le \big\langle \sigma _\ell (U),\sigma _\ell (U') \big\rangle \, \text{ and } \, -1 \le \big\langle \sigma _i(U), \sigma _i(U') \big\rangle \, \text{ for all } \, i \ne \ell \Big) . \end{equation}
16
where \(U\), \(U'\) are independent random variables distributed uniformly in the set \(X\). We claim that there exists a vertex \(x \in X\) and a set \(X' \subset X\) such that,
\begin{equation*} \beta e^{- C \sqrt{\lambda + 1}} |X| \le |X’| \end{equation*}
and
\begin{equation*} \big( p_\ell + \lambda \alpha _\ell \big) p_\ell |Y_\ell | \le |N’_\ell (x) \cap N’_\ell (y)| \end{equation*}
for every \(y \in X'\), and
\begin{equation*} \big( p_i - \alpha _i \big) p_i |Y_i| \le |N’_i(x) \cap N’_i(y)| \end{equation*}
for every \(y \in X'\) and \(i \in [r]\). To see this, we let
\begin{equation*} P= \Biggl\{ (x,x’): x,x’ \in X , \lambda \le \big\langle \sigma _\ell (x),\sigma _\ell (x’) \big\rangle \, \text{ and } \, -1 \le \big\langle \sigma _i(x), \sigma _i(x’) \big\rangle \, \text{ for all } \, i \ne \ell \Biggr\} . \end{equation*}
Since \(U\) and \(U'\) are independent and uniformly distributed over \(x\), Equation Equation 16 implies that
\begin{equation} |P|\geq \beta e^{-C\sqrt{\lambda + 1}}|X|^2. \end{equation}
17
However, by averaging, there must then exist a vertex \(x \in X\) such that:
\begin{equation} |X'|:=\bigl|\{ y: (x,y) \in P \} \bigr| \ge \frac{\beta e^{-C\sqrt{\lambda +1}}|X|^2}{|X|}\geq \beta e^{-C\sqrt{\lambda +1}}|X|. \end{equation}
18
We can them simply pick this \(X'\) to be the desired subset. Setting \(Y'_i = N'_i(x)\) for each \(i \in [r]\), it follows that
\begin{multline} \begin{aligned} p_\ell (X,Y_\ell ) + \lambda \alpha _\ell & = \frac{ \big( p_\ell + \lambda \alpha _\ell \big) p_\ell |Y_\ell |}{p_\ell |Y_\ell |}\\ & = \frac{ \big( p_\ell + \lambda \alpha _\ell \big) p_\ell |Y_\ell |}{| N'_\ell (x)|}\\ & = \min \bigg\{ \frac{ \big( p_\ell + \lambda \alpha _\ell \big) p_\ell |Y_\ell |}{| N'_\ell (x)|} : x’ \in X’ \bigg\} \\ & \le \min \bigg\{ \frac{|N'_\ell (x') \cap N'_\ell (x)|}{| N'_\ell (x)|} : x’ \in X’ \bigg\} \\ & = \min \bigg\{ \frac{|N_\ell (x') \cap N'_\ell (x)|}{| N'_\ell (x)|} : x’ \in X’ \bigg\} \\ & = p_\ell \big( X’, N’_\ell (x) \big) = p_\ell \big( X’, Y’_\ell \big) \\ \end{aligned}\end{multline}
and
\begin{equation*} p_i(X,Y_i) - \alpha _i \le \qquad p_i\big( X’, Y’_i \big) \end{equation*}
for every \(i \in [r]\), as required.