Upper bounds for multicolour Ramsey numbers

5 The Book Theorem

Algorithm 28 The Multicolour Book Algorithm in Balister et al.
#

Set \(T_1 = \cdots = T_r = \emptyset \), and repeat the following steps until either \(X = \emptyset \) or \(\max \big\{ |T_i| : i \in [r] \big\} = t\).

  1. Applying the key lemma: let the vertex \(x \in X\), the colour \(\ell \in [r]\), the sets \(X' \subset X\) and \(Y'_1,\ldots ,Y'_r\), and \(\lambda \ge -1\) be given by Theorem 27, applied with

    \begin{equation} \label{def:alpha} \alpha _i = \frac{p_i(X,Y_i) - p_0 + \delta }{t} \end{equation}
    20

    for each \(i \in [r]\), and go to Step 2.

  2. Colour step: If \(\lambda \le \lambda _0\), then choose a colour \(j \in [r]\) such that the set

    \begin{equation*} X” = N_j(x) \cap X’ \end{equation*}

    has at least \((|X'| - 1)/r\) elements, and update the sets as follows:

    \begin{equation*} X \rightarrow X”, \qquad Y_j \rightarrow Y’_j \qquad \text{and} \qquad T_j \rightarrow T_j \cup \{ x\} \end{equation*}

    and go to Step 1. Otherwise go to Step 3.

  3. Density-boost step: If \(\lambda {\gt} \lambda _0\), then we update the sets as follows:

    \begin{equation*} X \rightarrow X’ \qquad \text{and} \qquad Y_\ell \rightarrow Y’_\ell , \end{equation*}

    and go to Step 1.

In this section we will use the multicolour book algorithm to prove Theorem 35. To do so, we will first prove a few simple lemmas about the sets produced by the algorithm when applied with arbitrary inputs, and then apply these bounds to our setting. Recall that we are given an \(r\)-colouring \(\chi \) of \(E(K_n)\) and sets \(X,Y_1,\ldots ,Y_r \subset V(K_n)\), define

\begin{equation} \label{def:p0} p_0 = \min \big\{ p_i(X,Y_i) : i \in [r] \big\} , \end{equation}
21

and run the algorithm for some \(t \in \mathbb {N}\), \(\lambda _0 \ge -1\) and \(\delta {\gt} 0\).

In order to simplify the statements of the lemmas below, let us write \(X(s)\) and \(Y_i(s)\) for the sets \(X\) and \(Y_i\) after \(s\) steps of the algorithm, and set

\begin{equation*} p_i(s) = p_i\big( X(s), Y_i(s) \big) \qquad \text{and} \qquad \alpha _i(s) = \frac{p_i(s) - p_0 + \delta }{t}. \end{equation*}

Let us also write \(\ell (s) \in [r]\) and \(\lambda (s) \ge -1\) for the colour and number given by the application of None to the sets \(X(s)\) and \(Y_1(s),\dots ,Y_r(s)\), and define

\begin{equation*} \mathcal{B}_i(s) = \big\{ 0 \le j {\lt} s \, :\, \ell (j) = i \, \text{ and } \, \lambda (j) {\gt} \lambda _0 \big\} , \end{equation*}

for each \(i \in [r]\) and \(s \in \mathbb {N}\), to be the set of density-boost steps in colour \(i\) during the first \(s\) steps of the algorithm. We begin by noting the following lower bound on \(p_i(s)\).

Lemma 29 Lower bound for \(p_i\) during algorithm

Lemma 4.1

For each \(i \in [r]\) and \(s \in \mathbb {N}\),

\begin{equation} \label{eq:pi:lower:bound} p_i(s) - p_0 + \delta \, \ge \, \delta \cdot \bigg( 1 - \frac{1}{t} \bigg)^{t} \prod _{j \in \mathcal{B}_i(s)} \bigg( 1 + \frac{\lambda (j)}{t} \bigg). \end{equation}
22

Proof

Note first that if \(Y_i(s+1) = Y_i(s)\), then \(p_i(s+1) \ge p_i(s)\), since the minimum degree does not decrease when we take a subset of \(X(s)\). When we perform a colour step in colour \(i\), we have \(p_i(s+1) \ge p_i(s) - \alpha _i(s)\), by Theorem 27, and hence

\begin{equation*} p_i(s+1) - p_0 + \delta \ge \bigg( 1 - \frac{1}{t} \bigg) \big( p_i(s) - p_0 + \delta \big), \end{equation*}

by our choice of \(\alpha _i(s)\). Similarly, when we perform a density-boost step in colour \(i\) we have \(p_i(s+1) \ge p_i(s) + \lambda (s) \alpha _i(s)\), by Theorem 27, and hence

\begin{equation*} p_i(s+1) - p_0 + \delta \ge \bigg( 1 + \frac{\lambda (s)}{t} \bigg) \big( p_i(s) - p_0 + \delta \big). \end{equation*}

Recalling that there are at most \(t\) colour steps in colour \(i\), and that \(p_i(0) \ge p_0\), by the definition 21 of \(p_0\), the claimed bound follows.

Before continuing, let’s note a couple of important consequences of Theorem 29. First, it implies that neither \(p_i(s)\) nor \(\alpha _i(s)\) can get too small.

Lemma 30 Minimum bounds on \(p_i\) and \(\alpha _i\)

Lemma 4.2

If \(t \ge 2\), then

\begin{equation*} p_i(s) \, \ge \, p_0 - \frac{3\delta }{4} \qquad \text{and} \qquad \alpha _i(s) \, \ge \, \frac{\delta }{4t} \end{equation*}

for every \(i \in [r]\) and \(s \in \mathbb {N}\).

Proof

Both bounds follow immediately from 22 and the definition of \(\alpha _i(s)\).

It also implies the following bound on the number of density-boost steps.

Lemma 31 Upper bound on density-boost steps

Lemma 4.3

If \(t \ge \lambda _0\) and \(\delta \le 1/4\), then

\begin{equation*} |\mathcal{B}_i(s)| \le \frac{4 \log (1/\delta )}{\lambda _0} \cdot t \end{equation*}

for every \(i \in [r]\) and \(s \in \mathbb {N}\).

Proof

Since \(\lambda (j) {\gt} \lambda _0\) for every \(j \in \mathcal{B}_i(s)\), and \(p_i(s) \le 1\), it follows from 22 that

\begin{equation*} \frac{\delta }{4} \bigg( 1 + \frac{\lambda _0}{t} \bigg)^{|\mathcal{B}_i(s)|} \le 1 + \delta . \end{equation*}

Since \(t \ge \lambda _0\) and \(\delta \le 1/4\), the claimed bound follows.

Theorem 30 and Theorem 31 together provide a lower bound on the size of the set \(Y_i(s)\).

Lemma 32 Lower bound for \(Y_i\) set sizes

Lemma 4.4

If \(t \ge 2\), then

\begin{equation*} |Y_i(s)| \ge \bigg( p_0 - \frac{3\delta }{4} \bigg)^{t + |\mathcal{B}_i(s)|} |Y_i(0)| \end{equation*}

for every \(i \in [r]\) and \(s \in \mathbb {N}\).

Proof

Note that \(Y_i(j+1) \ne Y_i(j)\) for at most \(t + |\mathcal{B}_i(s)|\) of the first \(s\) steps, and for those steps we have

\begin{equation*} |Y_i(j+1)| = p_i(j) |Y_i(j)| \ge \bigg( p_0 - \frac{3\delta }{4} \bigg) |Y_i(j)|, \end{equation*}

by 14 and Theorem 30.

Finally, we need to bound the size of the set \(X(s)\). To do so, set \(\varepsilon = (\beta / r) e^{- C \sqrt{\lambda _0 + 1}}\), and define \(\mathcal{B}(s) = \mathcal{B}_1(s) \cup \cdots \cup \mathcal{B}_r(s)\) to be the set of all density-boost steps.

Lemma 33 Lower bound for reservoir X size

Lemma 4.5

For each \(s \in \mathbb {N}\),

\begin{equation} \label{eq:X:lower:bound} |X(s)| \ge \varepsilon ^{rt + |\mathcal{B}(s)|} \exp \bigg( - C \sum _{j \in \mathcal{B}(s)} \sqrt{\lambda (j)+1}\, \, \bigg) |X(0)| - rt. \end{equation}
23

Proof

If \(\lambda (j) \le \lambda _0\), then by 13 and Step 2 of the algorithm we have

\begin{equation*} |X(j+1)| \ge \frac{\beta e^{- C \sqrt{\lambda _0 + 1}}}{r} \cdot |X(j)| - 1 = \varepsilon |X(j)| - 1. \end{equation*}

On the other hand, if \(\lambda (j) {\gt} \lambda _0\), then \(j \in \mathcal{B}(s)\), and we have

\begin{equation*} |X(j+1)| \ge \beta e^{- C \sqrt{\lambda (j) + 1}} |X(j)|, \end{equation*}

by 13 and Step 3 of the algorithm. Since there are at most \(rt\) colour steps, and \(\beta \ge \varepsilon \), the claimed bound follows.

We will use the following lemma to bound the right-hand side of 23.

Lemma 34 Sum of \(\lambda \) parameters bound

Lemma 4.6

If \(t \ge \lambda _0 / \delta {\gt} 0\) and \(\delta \le 1/4\), then

\begin{equation*} \sum _{j \in \mathcal{B}(s)} \sqrt{\lambda (j)} \le \frac{7r \log (1/\delta )}{\sqrt{\lambda _0}} \cdot t \end{equation*}

for every \(s \in \mathbb {N}\).

Proof

Observe first that, by Theorem 29, we have

\begin{equation} \label{eq:B:condition} \frac{\delta }{4} \prod _{j \in \mathcal{B}_i(s)} \bigg( 1 + \frac{\lambda (j)}{t} \bigg) \le 1 + \delta \end{equation}
24

for each \(i \in [r]\). Note also that \(\lambda _0 \le \lambda (j) \le 5t/\delta \) for every \(j \in \mathcal{B}(s)\), where the lower bound holds by the definition of \(\mathcal{B}(s)\), and the upper bound by 24 and since \(\delta \le 1/4\). Now, since \(\log (1+x) \ge \min \{ x/2,1\} \) for all \(x {\gt} 0\), it follows that

\begin{equation} \label{eq:not:convexity} \frac{ \sqrt{\lambda (j)} }{\log (1 + \lambda (j)/t) } \le \max \bigg\{ \frac{ 2t }{ \sqrt{\lambda _0} }, \, \sqrt{ \frac{5t}{\delta }} \bigg\} \le \frac{ 3t }{ \sqrt{\lambda _0} }, \end{equation}
25

where in the second inequality we used our assumption that \(t \ge \lambda _0 / \delta \). It now follows that

\begin{equation*} \sum _{j \in \mathcal{B}_i(s)} \sqrt{\lambda (j)} \le \frac{ 3t }{ \sqrt{\lambda _0} } \sum _{j \in \mathcal{B}_i(s)} \log \bigg( 1 + \frac{\lambda (j)}{t} \bigg) \le \frac{7 \log (1/\delta )}{\sqrt{\lambda _0}} \cdot t, \end{equation*}

where the first inequality holds by 25, and the second follows from 24, since \(\delta \le 1/4\). Summing over \(i \in [r]\), we obtain the claimed bound.

Theorem 2.1

Let \(\chi \) be an \(r\)-colouring of \(E(K_n)\), and let \(X,Y_1,\ldots ,Y_r \subset V(K_n)\). For every \(p {\gt} 0\) and \(\mu \ge 2^{10} r^3\), and every \(t,m \in \mathbb {N}\) with \(t \ge \mu ^5 / p\), the following holds. If

\begin{equation*} |N_i(x) \cap Y_i| \ge p|Y_i| \end{equation*}

for every \(x \in X\) and \(i \in [r]\), and moreover

\begin{equation*} |X| \ge \bigg( \frac{\mu ^2}{p} \bigg)^{\mu r t} \qquad \text{and} \qquad |Y_i| \ge \bigg( \frac{e^{2^{13} r^3 / \mu ^2}}{p} \bigg)^t \, m, \end{equation*}

then \(\chi \) contains a monochromatic \((t,m)\)-book.

Proof

Recall that we are given an \(r\)-colouring \(\chi \) of \(E(K_n)\) and a collection of sets \(X,Y_1,\ldots ,Y_r \subset V(K_n)\) with

\begin{equation} \label{eq:book:thm:conditions} |X| \ge \bigg( \frac{\mu ^2}{p} \bigg)^{\mu r t} \qquad \text{and} \qquad |Y_i| \ge \bigg( \frac{e^{2^{13} r^3 / \mu ^2}}{p} \bigg)^t \, m \end{equation}
26

for each \(i \in [r]\), for some \(p {\gt} 0\), \(\mu \ge 2^{10} r^3\) and \(t,m \in \mathbb {N}\) with \(t \ge \mu ^5 / p\), and moreover

\begin{equation} \label{eq:book:thm:min:degree} |N_i(x) \cap Y_i| \ge p|Y_i| \end{equation}
27

for every \(x \in X\) and \(i \in [r]\). We will run the multicolour book algorithm with

\begin{equation*} \delta = \frac{p}{\mu ^2} \qquad \text{and} \qquad \lambda _0 = \bigg( \frac{\mu \log (1/\delta )}{8C} \bigg)^2, \end{equation*}

where \(C = 4r^{3/2}\) (as before), and show that it ends with

\begin{equation*} \max \big\{ |T_i(s)| : i \in [r] \big\} = t \qquad \text{and} \qquad \min \big\{ |Y_i(s)| : i \in [r] \big\} \ge m, \end{equation*}

and therefore produces a monochromatic \((t,m)\)-book.

To do so, we just need to bound the sizes of the sets \(X(s)\) and \(Y_i(s)\) from below. Observe that \(t \ge \lambda _0\) and \(\delta \le 1/4\), and therefore, by Theorem 31, that

\begin{equation} \label{eq:Bi:final:bound} |\mathcal{B}_i(s)| \, \le \, \frac{4 \log (1/\delta )}{\lambda _0} \cdot t \, = \, \frac{2^{12} r^3}{\mu ^2 \log (1/\delta )} \cdot t \, \le \, t \end{equation}
28

for every \(i \in [r]\) and \(s \in \mathbb {N}\). Since \(p_0 \ge p\), by 27 and the definition of \(p_0\), it follows that

\begin{equation*} |Y_i(s)| \, \ge \, \bigg( p - \frac{3\delta }{4} \bigg)^{t + |\mathcal{B}_i(s)|} |Y_i| \, \ge \, e^{-2\delta t / p} \, p^{|\mathcal{B}_i(s)|} \, \big( e^{2^{13} r^3 / \mu ^2} \big)^t \, m, \end{equation*}

where the first inequality holds by Theorem 32, and the second by 26 and 28. Noting that \(p^{|\mathcal{B}_i(s)|} \ge e^{-2^{12} r^3 t / \mu ^2}\), by 28, and that \(\delta / p = 1/\mu ^2\), it follows that

\begin{equation*} |Y_i(s)| \, \ge \, e^{-2 t / \mu ^2} \big( e^{2^{12} r^3 / \mu ^2} \big)^t \, m \, \ge \, m, \end{equation*}

as claimed. To bound \(|X(s)|\), recall 23 and observe that

\begin{equation*} \varepsilon ^{rt + |\mathcal{B}(s)|} \ge \bigg( \frac{\beta }{r} \cdot e^{- C \sqrt{\lambda _0 + 1}} \bigg)^{2rt} \ge \big( e^{- 4C \sqrt{\lambda _0}} \big)^{rt} = \delta ^{\mu r t/2} = \bigg( \frac{\mu ^2}{p} \bigg)^{-\mu r t / 2}, \end{equation*}

where the first step holds because \(\varepsilon = (\beta / r) e^{- C \sqrt{\lambda _0 + 1}}\) and \(|\mathcal{B}(s)| \le rt\), by 28, and the second step holds because \(\beta = 3^{-4r}\) and \(\lambda _0 \ge 2^{10} r^3\). Moreover, we have

\begin{equation*} \sum _{j \in \mathcal{B}(s)} \sqrt{\lambda (j)+1} \le \frac{8r \log (1/\delta )}{\sqrt{\lambda _0}} \cdot t = \frac{2^6Crt}{\mu }, \end{equation*}

by Theorem 34 and our choice of \(\lambda _0\), and therefore

\begin{equation*} |X(s)| \ge \bigg( \frac{\mu ^2}{p} \bigg)^{\mu r t / 2} \exp \bigg( - \frac{2^6C^2rt}{\mu } \bigg) - rt {\gt} 0, \end{equation*}

for every \(s \in \mathbb {N}\), by Theorem 33 and since \(\mu \ge 2^{10} r^3\) and \(C = 4r^{3/2}\). It follows that the algorithm produces a monochromatic \((t,m)\)-book, as claimed.